
Adversarial Exploits: Classification of AI Generated Human Faces 

 

 

 

 

 

A study submitted in partial fulfilment 

of the requirements for the degree of 

MSc in Data Science 

 

 

 

 

at 

 

 

 

 

THE UNIVERSITY OF SHEFFIELD 

 

 

 

 

by 

 

 

 

 

Sarath Tharayil Sreenivasan 

220202134 
 

 

 

 

 

 

 

 

 

 

 

 

 

Word Count: 9279                                                                                                September 2023 

 



Table of Contents 

1. Introduction ................................................................................................................. 5 

1.1 Aims and Objectives ................................................................................................ 5 

2. Literature Review ......................................................................................................... 6 

2.1 Artificial face generation techniques ........................................................................ 6 

2.2 Deep learning methods for face generation ............................................................... 7 

2.3 Recognizing AI-generated images ............................................................................. 9 

2.4 Summary ................................................................................................................ 9 

2.5 Gaps in Literature .................................................................................................. 10 

3 Methodology ............................................................................................................... 11 

3.1 Research Methodology ........................................................................................... 11 

3.2 Data Search Strategy and Collection ........................................................................ 12 

3.3 Ethical Implications ............................................................................................... 13 

3.4 Execution Platform ................................................................................................ 14 

3.5 Data Preprocessing ................................................................................................ 15 

3.5.1 Data Organisation............................................................................................ 15 

3.5.2 Image Standardization and Resizing ................................................................. 16 

3.5.3 Normalization and Intensity Scaling ................................................................. 16 

3.5.4 Data Augmentation ......................................................................................... 16 

3.5.5 Train-Test-Validation Splits .............................................................................. 17 

3.6 Feature Engineering .............................................................................................. 17 

3.7 Machine Learning Model ....................................................................................... 18 

3.7.1 Binary Classification ........................................................................................ 18 

3.7.2 Convolutional Neural Network (CNN) ............................................................... 18 

3.7.3 Model Training and Hyperparameter Tuning .................................................... 19 

3.8 Evaluation Matrix .................................................................................................. 19 

3.8.1 Evaluation Metrics .......................................................................................... 19 

3.8.2 Interpretation and Analysis.............................................................................. 20 

3.8.3 Cross-Validation and Test Set Evaluation .......................................................... 20 

3.9 Flow Chart and Methodologies used. ...................................................................... 21 

4. Results ....................................................................................................................... 21 

4.1 Exploratory Data Analysis ...................................................................................... 21 

4.1.1 Dataset Visualization ....................................................................................... 21 

4.2 Streamlit Dashboard .............................................................................................. 25 

4.3 Error Analysis ....................................................................................................... 25 

4.3.1 Types of Misclassifications: ............................................................................. 25 

5. Discussions................................................................................................................. 26 

5.1 Accuracy and Generalization .................................................................................. 26 



5.2 Data Distribution and Imbalance ............................................................................ 27 

5.3 Challenges in Classifying Orientation ...................................................................... 27 

5.3.1 Multiple Persons in the Image .......................................................................... 27 

5.3.2 Angled Orientation .......................................................................................... 27 

5.4 Ethical Implication of the research ......................................................................... 28 

6. Conclusion ................................................................................................................. 28 

6.1 Summary .............................................................................................................. 28 

6.2 Future Directions and Improvements ..................................................................... 28 

6.3 Critical Reflection .................................................................................................. 29 

7. References ................................................................................................................. 30 

8. Appendix .................................................................................................................... 33 

8.1 Appendix 1 (Ethics Approval) ................................................................................. 33 

8.2 Appendix 2 (Code) ................................................................................................. 33 

 

Table of Figures 

Figure 1 Random selection of images ............................................................................... 22 

Figure 2 Colour Channels of Train set .............................................................................. 23 

Figure 3 Edge Counts of the Train Set ............................................................................... 24 

Figure 4 Colour Channels of Train and Test Splits ............................................................. 24 

Figure 5 Snapshot of the Streamlit Dashboard .................................................................. 25 

Figure 6 Accuracies and Loss Over Epochs ....................................................................... 26 

Figure 7 Random Misclassified Images ............................................................................ 27 

 

Table of Tables 

Table 1 Methodologies in Research .................................................................................. 12 

Table 2 Individual Image renaming criteria ..................................................................... 16 

Table 3 CNN Architecture ............................................................................................... 19 

Table 4 Train-Test-Validation Splits ................................................................................. 22 

Table 5 Image Statistics ................................................................................................... 23 

Table 6 Model Metrics .................................................................................................... 26 

 

 

 

 

 

 

 

 



ABSTRACT 
 

AIM  

This paper develops and evaluates a Convolutional Neural Network (CNN) 
model for classifying real human faces and faces created by Generative Adversarial 
Networks (GANs). Its main goal is to accurately distinguish between real human facial 
images and their AI-generated duplicates. 

 

METHODS 

The study uses a comprehensive methodology that includes a literature review 
to understand the current state of artificial face generation, data preprocessing, 
exploratory data analysis (EDA), feature extraction using the VGG-16 architecture, 
model development, and the development of an interactive Streamlit dashboard for 
real-time image classification. Future development areas include data augmentation, 
position estimation, object identification, user feedback, and transformable actual 
faces. 

 

RESULTS 

By classifying both real and GAN-generated images with an astonishing 98.5% 
accuracy, the CNN model demonstrated its impressive generalization performance. 
Although the model performed exceptionally well in binary classification, difficulties 
were noted in separating orientations from situations involving many participants. 
In terms of ethical considerations, AI research has placed an emphasis on privacy, 
openness, and responsible disclosure. 

 

CONCLUSION 

This work successfully demonstrates the capabilities of CNN models in the 
complex task of identifying real human faces from AI-generated faces. It highlights 
the importance of ethical obligations associated with AI research efforts and the need 
for responsible and open practices. Additionally, this project emphasizes the critical 
value of rigorous data preparation and the importance of creating diverse training 
data sets that accurately reflect real-world circumstances. This guarantees the 
generalizability and ability of the models to be applied to a wide range of scenarios. 
Finally, this study examines the nuances of model performance and possible 
improvements, exploring options such as data augmentation, pose estimation, and 
user feedback to further improve the model's capabilities.  



1. Introduction 

In the age of artificial intelligence (AI), the distinction between reality and 
digital creation has become increasingly blurred (Jordan, 2009). Due to deep fake 
videos, AI generated images and text, it is becoming increasingly difficult to tell what 
is real and what is not. In a world where images generated by AI can be misused, 
recognizing them appropriately is crucial. Berger (2014) states that all arts are going 
digital, merging in transdisciplinarity and transmedia, further blurring the line 
between reality and digital creation. The concept of AI has been around since the 
1950s, with the development of computers and the ability to perform tasks that would 
normally require human intelligence (Simon, 1993). But it was only with the 
development of neural networks and deep learning algorithms that AI technology 
really took off. Modern industries such as transportation, agriculture, medicine, and 
many more have successfully embraced AI (Khan et al., 2021). As a result, AI has been 
used to develop content that can mimic human speech, movement, and even 
creativity. 

Using AI to create or craft information based on user requests falls under AI-
generated content (Du et al., 2023). Images, videos, text and even music are examples 
of this. AI has a wide range of possible applications, particularly in entertainment 
and games, but these applications also come with significant difficulties. The ability 
to produce highly realistic content that is difficult to spot raises questions about its 
authenticity and the potential for misuse.  

In today's digital environment, developing methods to reliably detect AI-
generated material is critical. The widespread use of AI-generated content, including 
deepfakes and synthetic media, poses significant risks to society. False information, 
malicious impersonations and fake news can undermine trust, damage reputations, 
and undermine democratic processes (Hu, 2020). The integrity of information and 
media must be protected by accurately identifying AI-generated content. It gives 
people, organizations, and platforms the ability to distinguish real content from fake, 
allowing them to make informed decisions and reduce potential harm (Meel & 
Vishwakarma, 2020). The ability to properly identify AI-generated content is critical 
for several reasons like to prevent the spread of misinformation and fake news that 
can have serious consequences like damage to reputation or dissemination of 
propaganda (Kreps et al., 2022). 

 

1.1 Aims and Objectives 

Deep learning techniques have evolved over the past decade, making it 
increasingly easy to create images that are extremely photorealistic. As a result, it is 
very difficult, if not impossible, for the average social media user today to identify 
fake social media content and profiles in their feed (Rossi et al., 2022).  



Research Aim: 

RA1. To develop an efficient and optimal method of classifying real human faces 
from AI generated faces. 

It can be difficult to distinguish between what is real and what is fake, making 
accurate labelling of fabricated content a problem. Complicating the issue further is 
the possibility that some fake content was intentionally generated to look authentic, 
making it difficult to pinpoint where it really came from. Also, due to the massive 
amount of data generated each day, it is impractical to carefully screen each medium 
for legitimacy. Using a standardized system that uses machine learning algorithms to 
automatically recognize and classify AI-generated humans would be the ideal 
approach. The overall goal of this system is to ensure that AI-generated individuals 
are always identified as virtual and are not used to create false identities for unlawful 
behaviour that could have serious repercussions on society, such as the loss of trust 
and influencing public opinion. 

Research Objectives: 

RO1. Critical review of the literature on AI-generated faces and face classification 
techniques. 

RO2. To identify the features that distinguish real human faces from AI-generated 
faces. 

RO3. Development of a classification model using machine learning algorithms to 
differentiate between real and AI-generated faces. 

RO4. To evaluate the performance of the classification model by testing it on a large 
data set of both real and artificial faces. 

Research Question: 

RQ1. How can current real and fabricated face classification methods be improved 
to develop an optimal model to accurately classify real and AI-generated 
human faces? 

Structure of the Dissertation 

The five chapters that make up the remaining parts are the literature review, 
methodology, results, discussions and conclusion. 

2. Literature Review 

2.1 Artificial face generation techniques 

In recent years, the involvement of artificial intelligence in the creation of 
images has attracted a lot of attention (Liu & Yu, 2021). The use of AI-generated text, 
audio, image, and video as a weapon for financial fraud, misinformation campaigns, 
and non-consensual intimate photography is widespread (Nightingale and Farid 
2022). Because of their many uses, face photos rank highly among the various 



categories of real images (Abdolahnejad & Liu, 2020). Although face images are very 
difficult to synthesize due to their highly complex hierarchical structure and the 
uniqueness of the information contained in each individual face image, recent 
advances in face synthesis and semantic manipulations have made it possible to 
create artificial faces that are identical to real faces (Yegemberdiyeva & Amirgaliyev, 
2021).  

Bank et al. (2020) introduces autoencoder networks, a type of neural network 
that can meaningfully compress and represent input data before decoding it to 
produce input that is comparable to the original. By training the autoencoder with a 
dataset of faces, they can be used to create new faces by sampling from latent space. 
Variational autoencoders (VAE) that Kingma and Welling (2019) proposes use a 
Bayesian approach to learn the probability distribution of the input data and apply it 
to generate new samples. Ozkan and Ozkan (2018) proposes a kinship network that 
can create a potential child's face by examining a picture of his parents. Sun et al. 
(2014) demonstrates how deep learning can be used to create useful trait 
representations that increase interpersonal differences while reducing intrapersonal 
variability. AI-generated images have become increasingly complex and difficult to 
distinguish from real-world images due to these breakthroughs in Generative 
Adversarial Networks (GAN), autoencoders, and other AI technologies (Bang & Woo, 
2021). The generated faces show that the AI algorithms have overcome the uncanny 
valley and are now able to generate indistinguishable and reliable faces (Nightingale 
& Farid, 2022). This is precisely why realistic faces produced by GANs are the subject 
of media attention. In studies and surveys that attempted to quantify distinctness, 
people have consistently been unable to reliably distinguish between all real and 
synthetic images (Kas et al., 2020).  

2.2 Deep learning methods for face generation 

Deep learning methods, specifically Generative Adversarial Networks (GANs), 
are used to create AI-generated human faces (Creswell et al., 2018). This is a method 
of generative modelling is based on a game between two machine learning models, 
the discriminator (D) and the generator (G), typically implemented using neural 
networks (Goodfellow et al., 2020). D has access to both the training set and G’s 
generations, and predicts the probability that the sample is from the training set or 
from G (Creswell et al., 2018). At the same time, G only learns from interacting with 
D and generates images without access to the actual images in the training set, and 
its training procedure is to create generations and maximize the probability that D 
makes a mistake (Goodfellow et al., 2014). The generator then modifies its output to 
produce images that are more lifelike until the discriminator is no longer able to tell 
the difference between actual and synthetic images. The four typical fake face 
synthesis modes with different GANs are whole face synthesis, facial attribute 
editing, facial expression manipulation, and Deepfakes (Stehouwer et al., 2019). 



When training GANs, a low-variety training set causes the generator to spins 
through a small range of output types and never learn its way out of the trap, leading 
to a problem known as mode collapse (Ding et al., 2022). Another problem of 
vanishing gradients arises when, during training, the gradients required to update 
the neural network weights are propagated back through the layers of the network 
and become very low. The network struggles to learn this because the weights are not 
updated frequently enough (Su, 2018). As a result, we have different GAN types to 
modify and fix the glitches in the current algorithm, or specially designed types for 
specific purposes, different architectures or using new techniques. 

There are different types of GANs that are made specifically for creating synthetic 
human faces. These types of GANs use a variety of algorithms and architectures to 
create highly realistic and detailed images of human faces with different 
characteristics such as pose, expression, and background. Some of the different types 
of GANs specifically used to generate human faces are as follows: 

1. Progressive growing of GANs (ProGAN):  This type initially produces low-
resolution images and gradually increases the resolution over time to produce 
detailed and high-quality images of human faces. Instead of having to learn all 
the scales at once, the training can first recognize the large-scale structure of 
the image distribution before focusing on finer and finer scale details (Karras 
et al., 2017). 

2. Style-based GAN architecture (Style GAN): This is currently the most advanced 
technique for high-resolution image synthesis (Karras et al., 2019). With this 
method, the image synthesis process is broken down into two distinct steps: 
creating a low-resolution image to capture fundamental aspects such as 
posture and expression, and using a different network to encode style 
information such as colour, texture, and fine detail (Karras et al., 2020). 

3. Cycle-Consistent Generative Adversarial Network (CycleGAN): Unlike typical 
GANs, CycleGAN is designed for image-to-image translation jobs. Two 
different GANs are trained to fulfil the purpose of CycleGAN to learn a 
mapping between two different types of images: one to create images in the 
destination domain from photos in the source domain and another to create 
images in the source domain from images in the destination domain ensuring  
that the image translations are consistent in both directions (Wang & Lin, 
2018). 

4. Star Generative Adversarial Network (StarGAN): StarGAN is a powerful and 
flexible model that uses a single generator network to produce realistic 
renderings while changing one aspect of a given image to another, e.g., B. by 
changing a person's facial expression from a smile to a frown (Choi et al., 
2018). 

5. Self-Attention Generative Adversarial Network (SAGAN): This can generate 
high-resolution images of human faces with greater attention to detail. It is 



used to manipulate facial attributes, e.g., to remove or put on glasses, and uses 
a self-attention technique to focus on key elements of the image. 

Overall, from the literature available, GANs have become the preferred 
technique for face manipulation and synthesis due to their generality, diversity, 
realism, and efficiency. 

2.3 Recognizing AI-generated images 

Several techniques have been developed to recognize images generated by AI. 
Rule-based methods and machine learning-based methods are two main groups that 
these techniques can be divided into. Rule-based methods involve establishing 
precise guidelines or standards that can be used to recognize images generated by 
artificial intelligence, e.g., searching for patterns or artifacts that are common in 
these images (Gu & Angelov, 2018). Techniques based on machine learning involve 
teaching a machine learning model to recognize patterns and features in a data set of 
real and AI-generated images. Wang et al. (2019) observe that the imperfection of the 
upsampling methods it embodies could serve as an important advantage for GAN-
synthesized fake image detection and fake location. Much research has been done on 
manipulations such as face switching, face re-enactment, and expression 
modification, resulting in the development of a variety of useful techniques for 
distinguishing between fake and authentic videos and images (Alamayreh & Barni, 
2021). Empirically, a human is an animate being, while a machine is inanimate. The 
line between human and AI seems to be blurred by the human-like artificial entities. 
Our visual system's ability to recognize life in a face is referred as facial animation 
perception (Koldewyn et al., 2014) and Xiang et al. (2022) use an adaptation paradigm 
to explore how humans perceive animated faces. 

Misidentification of AI-generated images can have serious repercussions on 
people, businesses, and society at large. For instance, mistaking an AI-generated 
image for a real-world image may cause misinformation or fake news to spread, 
which may have serious repercussions for society (Burton & Soare, 2019). 
Misidentifying an AI-generated image can also lead to ethical or legal problems, such 
as when those photographs are used to make deepfake videos of people without their 
permission. Since most of the research datasets, like Celeb-DF (Li et al., 2020), have 
only recently been published and GANs were only developed in 2014 (Goodfellow et 
al., 2014), the field of identifying AI-generated images is still new and  there is much 
room for future research. One promising area of research is the development of more 
advanced machine learning models that can accurately identify AI-generated images.  

2.4 Summary 

The literature review provides a thorough analysis of current developments in 
AI-generated facial synthesis, with a focus on the application of deep learning and 
GANs. It draws attention to the proliferation of AI-generated content, including text, 
audio, photos, and videos, that is used for unfortunate exploits like financial fraud 



and smear campaigns. Because of its wide range of applications, creating realistic 
human faces has attracted the most attention. Although facial structures are 
inherently complicated, and each person's face is unique, recent advances in facial 
synthesis and semantic manipulation techniques have enabled the creation of 
artificial faces that are incredibly lifelike. 

 The use of GANs is the predominant method for creating artificial faces in 
machine learning. Despite the difficulties that GAN training brings, such as mode 
collapse and vanishing gradient problems, which can limit the variety and quality of 
faces generated, algorithmic developments have significantly improved the 
performance of both discriminator and generator networks. 

These developments have led to the creation of exceptionally high-quality 
human faces, which often confuse the human participants and blur the line between 
artificial and real images. As a result of this advancement in GAN-based face 
synthesis, artificial intelligence-generated faces are now essentially 
indistinguishable from real ones. From a machine learning perspective, these 
advances highlight the amazing ability of GANs to discover complex patterns and 
nuanced details in image datasets, ultimately achieving a level of realism that was 
previously unattainable. These innovations have not only increased the potential of 
computer vision but have also sparked important discussions about the moral and 
societal implications of AI-generated material and warrant further study and 
attention in the machine learning community. 

Rule-based and machine learning-based methods can be used to categorize the 
methods for identifying GAN-generated faces. In recent years, machine learning 
technologies have replaced rule-based technologies as the preferred strategy. This 
trend is partly due to the rapid developments in AI-generated image synthesis 
models, which have made it more difficult to recognize patterns or artifacts typical 
of AI-generated images based solely on predetermined criteria or standards. 

Adopting a machine learning-based strategy is significant due to the problems 
caused by the increasing number of fake human faces online. The spread of false 
information, fake news, and moral and legal issues are sometimes due to the false 
belief that AI-generated images are real. Such misidentifications can have far-
reaching effects on people, companies, and society. Additionally, AI-generated 
image recognition is a relatively young and developing topic. This means that there 
is still a lot of potential for study and improvement, especially when it comes to 
creating more sophisticated machine learning models specifically designed for the 
goal of identifying AI-generated photos. The continued development of AI technology 
highlights the importance of state-of-the-art machine learning models and the need 
for continuous research and innovation in the field of AI-generated image 
identification. 

2.5 Gaps in Literature 

1. The lack of data on the effectiveness of AI-generated image identification 
techniques represents a significant research gap. Although the review 
explores multiple approaches to identifying AI-generated photos, it does not 



provide information on how effective these strategies are. Future work should 
focus on conducting thorough performance evaluations of these detection 
methods and assess their robustness, accuracy, and false positive rates. 

2. The review mentions the potential impact of misclassifying AI-generated 
photos, but a more thorough analysis of the ethical and societal implications 
would be beneficial. The impact of misidentification on people, businesses, 
and society in general should be addressed, as should privacy and security 
issues. 

3. Due to the rapid development of AI-generated image synthesis techniques, 
many publicly available datasets are no longer useful for training machine 
learning models designed to categorize AI-generated images. These data sets 
often do not capture the potential of today's generative models, especially 
when it comes to creating synthetic content that is incredibly compelling and 
realistic. There is an urgent need to create and disseminate new ethically 
sourced datasets consistent with the current synthetic media landscape to 
address the serious problems posed by the increase in AI-generated images. 
These datasets should include a wide range of artificial intelligence (AI)-
generated content, such as deepfakes, altered faces and other types of 
synthetic photography. 

 

3 Methodology 

This chapter describes the research methods used to achieve the study goals. 
The thorough methodological framework of this study is detailed below. 

3.1 Research Methodology 

Research technique is critical to guiding the course of study and providing an 
organized strategy for answering research questions. This section describes the 
research methodology used to support study design, data collection, analysis, and 
interpretation. This study uses a quantitative strategy to ensure a comprehensive 
understanding of the classification of real and GAN-generated human faces. In 
quantitative research, numerical data is collected and analysed using statistical 
methods. In educational research, quantitative methods can be used to collect and 
analyse data on a range of topics, including surveys, secondary data collection, 
sampling, and experimental methods (Gorard, 2001). Since this is the classification 
problem and describes what occurs and not why it occurs, the use of quantitative 
methods is appropriate in this study.  

 

 



Table 1 Methodologies in Research 

Sl.No Quantitative Research Qualitative Research 

1 
Used to test or confirm theories or 
assumptions using numbers and 
graphs 

Used to understand concepts and 
experiences based on accumulated 
knowledge 

2 
The analysis is based on 
mathematics and other statistical 
analysis 

Analysis based on summarizing, 
categorizing, and interpreting 

 

This dissertation uses an inductive approach with a quantitative technique for 
research. This study uses two datasets, each with at least 10,000 images, to distinguish 
between real and artificial human faces. The images are labelled to indicate whether 
they are real or fake, and this information is used to train a machine learning model. 
The inductive approach involves collecting data, analysing it, and formulating ideas 
or generalizations considering the results. Liu (2016) describes a general inductive 
strategy that can be applied to provide significant interpretive power to make sense 
of data in educational research. This strategy is practical and adaptable. Because the 
goal of this study is to uncover patterns and trends in the data that can be used to 
distinguish between actual and synthetic human faces, this approach is ideal.  

3.2 Data Search Strategy and Collection 

Identifying and sourcing appropriate datasets that match research goals is the 
foundation of any data-driven research. Appropriate datasets serve as the foundation 
upon which models are built and evaluated (Ponce et al., 2006). Choosing diverse and 
representative datasets is crucial to avoid bias and ensure model fairness (Pagano et 
al., 2023). The intended approach is to obtain the required datasets containing both 
real and synthetic faces, and then train a machine learning model in Python to 
effectively categorize both types of faces. The datasets used, Person Face Dataset and 
Flickr-Faces-HQ Dataset (FFHQ), were selected after careful consideration of their 
relevance and suitability. Specific criteria were created to ensure the quality and 
suitability of the datasets. First, the data sets had to contain many both real human 
faces and GAN-generated faces. Second, the data sets must be publicly available and 
well documented so that the research process is reproducible and transparent. 
Finally, ethical considerations were key, and datasets containing real human faces 
required appropriate consent and usage rights. 

Person Face Dataset contains synthetic images generated by GANs. These 
photos demonstrate GAN's extraordinary ability to create incredibly compelling 
humanoid faces. In addition, the FFHQ dataset collected through the Flickr photo 
sharing site contains legitimate photos of real human faces taken in different 
environments. The combination of these datasets provides a balanced representation 



of both real and GAN-generated human faces. Research ensures the quality, integrity, 
and representativeness of the datasets collected by adhering to strict criteria.  

3.3 Ethical Implications 

The advent of machine learning and image categorization techniques has 
raised several ethical issues, particularly when dealing with sensitive data such as 
human faces. This section discusses the ethical issues of classifying real and GAN-
generated human faces. It emphasizes the importance of responsible data use, 
possible biases, and the societal consequences of misclassification.  

Data ethics addresses a variety of issues, including informed consent, privacy, 
and data ownership. This study is categorised low risk as it uses two publicly 
available datasets. One obtained from Kaggle under CC0: Public Domain license, 
consisting of 10,000 photographs of human faces created from a GAN model (Xu, 
2021). Despite its synthetic origins, it makes you think about the implications of 
creating hyper-realistic images of people who don't exist. Such photos could be used 
for various purposes, including disinformation or identity theft. The ethical 
application of synthetic data requires a delicate balance between scientific progress 
and social responsibility. The other dataset is Flickr-Faces-HQ (FFHQ) used in the 
StyleGAN architecture development by Karras et al. (2019) which contains 70,000 
high-quality images of real human faces with a resolution of 1024x1024 under the 
Creative Commons BY-NC-SA 4.0 license. The use of the FFHQ dataset, a secondary 
dataset, which consists of publicly uploaded Flickr photos, raises concerns about user 
consent to share images. Although the data set complies with the Flickr’s Terms of 
Service and only images collected under permissive licenses, it is important to 
consider potential ethical concerns associated with the use of photos posted in an 
online community. 

Machine learning algorithms are prone to bias in training data, which can lead 
to skewed or unfair predictions. There may be bias associated with facial 
classification based on gender, race, or other demographics. Considering this issue, 
efforts have been made to reduce bias in data collection and model training. The 
importance of algorithmic fairness has been highlighted in the literature (Mitchell et 
al., 2021). To counteract prejudice, diverse and representative datasets covering a 
wide range of human appearances were used. In addition, the study used data 
augmentation and balanced sampling to ensure that real and GAN-generated faces 
were represented equally. Using fairness-aware metrics during model evaluation 
helps reduce bias even further. 

Beyond the technical correctness, image categorization models have a social 
consequence. Misclassification of the human face can have serious consequences, 
especially in critical situations such as security or law enforcement (Lu, 2023). 
Misidentification could lead to wrongful allegations or violations of individual rights. 
When introducing such models, it is crucial to examine potential downstream 

https://creativecommons.org/publicdomain/zero/1.0/


impacts as well as accountability measures. The study recognizes the need to provide 
explicit explanations for model predictions to facilitate human interpretation and 
monitoring (Gilpin, 2018). Efforts are made to ensure that the model's decisions are 
interpretable and consistent with human values, thereby increasing trust and 
accountability. 

The cornerstone of this research are ethical considerations that guide the 
responsible and conscientious use of data and technology. Data set selection, bias 
reduction measures, and accountability procedures all contribute to the ethical 
framework of the study. As technology advances, the project aims to contribute to the 
discussion on the ethical implications of machine learning applications, particularly 
image classification. The next sections cover the execution platform, data 
preparation, feature engineering, machine learning models, scoring matrix, and the 
methodology used, which explains how these components are influenced by and 
aligned with ethical considerations. 

3.4 Execution Platform 

Successful application of the research methodology depends on a solid 
execution platform that enables efficient code development, experimentation, and 
model evaluation. Research is conducted on a Windows machine utilizing the Python 
programming language and the PyCharm integrated development environment 
(IDE) for its versatility and productivity. 

The project involves working with large datasets of real and GAN-generated 
human faces. The work of preprocessing, feature extraction, and model training on 
such large amounts of data requires a solid execution platform capable of efficiently 
managing computational resources. While cloud options were considered, practical 
problems arose when dealing with massive amounts of data. Uploading large files to 
cloud servers posed challenges in terms of data transport speed and storage space. In 
addition, the computing power required to process large amounts of data presented 
difficulties as cloud solutions were limited by the given resources. 

Given the difficulties associated with cloud-based solutions, an offline 
execution strategy was carefully selected as the optimal alternative. This decision is 
based on the freedom and cost-effectiveness that an offline environment offers. 
Initial experimentation and model development on a local computer offers the 
benefit of full control over computing resources and ensuring that processing 
limitations do not impede progress. When dealing with large datasets, in this case 
around 30 GB of image data, and when optimal use of local hardware resources is 
critical, this strategy is invaluable. Additionally, the offline execution strategy is a 
cost-effective alternative as it does not require costly cloud subscriptions or dedicated 
infrastructure. While the research starts with an offline execution technique, the 
approach is scalable in the future. If necessary, the study implementation can be 
easily transferred to cloud-based technologies. The offline environment acts as a 



steppingstone for fundamental experimentation and modelling. As research evolves 
and data processing requirements increase, the code base and methodology can be 
moved to cloud platforms with more processing and storage capacity. 

Libraries and their role  

• NumPy and Pandas are core data manipulation and analysis libraries. 
NumPy’s array-based operations and Pandas data structures ensure efficient 
data set processing and enable smooth pre-processing and feature 
development.  

• OpenCV is useful for image preprocessing and editing. It offers a wide range 
of image resizing, normalization, and data expansion operations, ensuring 
consistency and compatibility across the dataset.  

• Keras, a TensorFlow library component, simplifies the creation and training 
of deep learning models. Its high-level API allows rapid prototyping of neural 
network architectures and allows the creation of sophisticated models with 
minimal coding effort. 

• Streamlit: This library is used to develop an interactive online application for 
model visualization and evaluation. Its easy-to-use interface allows 
researchers and stakeholders to interact with the trained model and gain 
insights into predictions and performance.  

• Matplotlib and Seaborn: These visualization libraries help visualize data 
distributions, model performance, and function plots by allowing the creation 
of informative charts and graphs.  

• Scikit-learn: Scikit-learn is a library that provides a comprehensive set of 
machine learning algorithms, tools, and measurements. Its user-friendly 
interface facilitates the integration of various categorization models and 
evaluation measures. 

• VGG16: The pre-trained deep learning model VGG16 is used for feature 
extraction. Its convolutional layers collect hierarchical image features, 
enabling effective learning of the categorization representation. It is a popular 
option and serves as a solid baseline model in computer vision research due to 
its simple architecture, compact convolution filters, and layer organization 
(Tammina, 2019). 

3.5 Data Preprocessing 

Data preparation is critical to improving the quality and reliability of machine 
learning models (Njeri, 2022). In the context of this study, data pre-processing refers 
to a set of activities that transform raw image data into an organized and usable 
format for further analysis and modelling. 

3.5.1 Data Organisation 

The research leverages two publicly available datasets: the Person Face 
Dataset and the FFHQ dataset. Manually labelling each image was a critical step in 



this process. Because this is a supervised machine learning problem, manual 
labelling allows for the creation of accurate ground truth labels. Each image was 
classified as "Real" or "GAN-generated" based on its source. This manual labelling 
process provides a solid foundation for model training and evaluation. To do this, a 
renaming method was used that uniquely identifies each image while retaining its 
class affiliation. The renaming used a formula-based approach to generate serial 
numbers that reflect image classification.  

Table 2 Individual Image renaming criteria 

Class Formula to check the class 
Real (image name - 1) % 9 = 0 
GAN-generated (image name - 2) % 9 = 0 

 

This methodical renaming ensures that each image is clearly identified and 
organized for later pre-processing and analysis. 

3.5.2 Image Standardization and Resizing 

The variety of image dimensions is one of the central problems when dealing 
with image data. The convergence and accuracy of the model can be affected by 
different image sizes (Viertel & König, 2022). To solve this problem, a crucial step in 
data preprocessing is the standardization of image size. All photos are resized to a 
standard resolution of 224 x 224 pixels to ensure they are all the same size. 

3.5.3 Normalization and Intensity Scaling 

The normalization of pixel values, along with the standardization of the image 
dimensions, is crucial for the stability and convergence of the model (Kusunose, 
2022). By dividing each pixel value by 255.0, the image pixel values are normalized to 
a range of [0,1]. Normalization reduces the impact of changing lighting conditions by 
ensuring that pixel intensity values are consistent across datasets. This preprocessing 
phase is critical for achieving optimal performance during model training using 
gradient-based optimization. 

3.5.4 Data Augmentation 

Data enrichment is a strategy to improve model generalization while reducing 
overfitting. Augmentation creates new training samples by applying different 
transformations to existing images. Techniques such as rotating, mirroring and 
zooming are used to supplement the data set. Augmentation makes the training set 
more diverse and variable, allowing the model to acquire robust features and 
patterns (Shoaib, 2022). By generating enhanced versions of the original photos, the 
model improves its ability to deal with a variety of real-world circumstances. 



3.5.5 Train-Test-Validation Splits 

A critical step in the data preprocessing workflow is the partitioning of the data 
set into discrete subsets. To enable successful model training, hyperparameter 
tuning, and unbiased evaluation, the datasets are divided into training, validation, 
and test sets. To ensure a representative sample, the distribution of real and GAN-
generated images is carefully maintained across different subsets. The train set is 
used to train the model, the validation set is used to fine-tune hyperparameters, and 
the test set is used to evaluate model performance. 

The research ensures that the datasets conform to the machine learning 
models through methodical organization and thorough pre-processing approaches. 
These pre-processing processes improve the resilience and reliability of the 
following machine learning phases. 

3.6 Feature Engineering 

Feature engineering is critical to improving the rendering performance of 
machine learning models. Feature engineering enables models to identify detailed 
patterns and correlations by extracting meaningful and relevant features from raw 
data, improving their predictive capabilities (Pramanik, 2021). In the context of this 
study, feature engineering is an important step in classifying real and GAN-generated 
human faces. 

Convolutional neural networks (CNNs) have emerged as powerful methods for 
extracting features from image data. A CNN is a type of deep learning architecture 
designed to automatically learn hierarchical and discriminatory features from 
images (Santos et al., 2022). A pre-trained VGG16 model was used for feature 
extraction in this study. The VGG16 model, is known for its ability to capture complex 
visual aspects (He, 2020). Features were retrieved from the block5_conv2 layer of the 
VGG16 model. This layer collects high-level semantically significant features and is 
therefore useful for distinguishing between actual and GAN-generated human faces. 

The feature extraction method is to pass each image through the VGG16 model 
and retrieve the feature vector generated by the block5_conv2 layer. This vector 
encapsulates the main visual information of the image. The feature vector is then 
flattened to create a one-dimensional representation, converting the image into a 
collection of numerical features. 

The derived feature vectors from the VGG16 model are inherently high-
dimensional, which can lead to computational inefficiencies and overfitting. To solve 
these challenges, dimensionality reduction techniques have been employed to 
minimize the feature space while retaining the most informative components. 
Dimensionality reduction was achieved using principal component analysis (PCA). 
The primary axes of variation in the data are identified via PCA and the feature 
vectors are projected onto a lower dimensional subspace. This subspace preserves 



the highest variance of the original data and enables the generation of a compact yet 
informative feature representation. 

Since not all extracted features contribute equally to model performance, 
feature selection is an important part of feature engineering. A feature importance 
analysis was performed to identify the most distinctive features for distinguishing 
between actual and GAN-generated human faces. To rank and select features based 
on their importance to the classification task, techniques such as recursive feature 
elimination (RFE) and mutual information were used. 

3.7 Machine Learning Model 

A crucial step towards an accurate and robust classification of real and GAN-
generated human faces is the selection of suitable machine learning models. 
Machine learning models serve as the backbone of the classification pipelines, using 
the data retrieved to discover differentiated patterns and make informed predictions. 
This section describes the machine learning models used in this study, highlighting 
their architecture, training procedures, and importance in achieving the research 
goals. 

3.7.1 Binary Classification 

Given the nature of the problem (a binary classification task), various well-
known machine learning models were evaluated for implementation. The main goal 
was to find models that understand complex relationships and can distinguish 
between actual and GAN-generated human faces. Because of its demonstrated 
success in image classification tasks, Convolutional Neural Network (CNN) is chosen 
for this task. 

3.7.2 Convolutional Neural Network (CNN) 

CNNs have transformed image categorization by learning hierarchical 
features directly from pixel values. CNNs are characterized by their ability to capture 
local patterns via convolutional layers while learning global relationships via pooling 
and fully connected layers. A custom CNN architecture was created, consisting of 
numerous layers of convolution and pooling, followed by dense layers of 
classification. The CNN architecture was designed to take advantage of the spatial 
hierarchies visible in images to successfully capture differentiators. 

 

 

 

 

 



Table 3 CNN Architecture 

Layer         Type Output Shape Param #    
dense          Dense (None, 512) 51380736 
batch_normalization Batch 

Normalization                                                  
(None, 512) 2048 

dropout Dropout (None, 512) 0 
dense_1 Dense (None, 256) 131328 
batch_normalization_1 Batch 

Normalization                                                  
(None, 256) 1024 

dropout_1 Dropout (None, 256) 0 
dense_2 Dense (None, 128) 32896 
batch_normalization_2 Batch 

Normalization                                                  
(None, 128) 512 

dropout_2 Dropout (None, 128) 0 
dense_3 Dense (None, 64) 8256 
batch_normalization_3 Batch 

Normalization                                                  
(None, 64) 256 

dropout_3 Dropout (None, 64) 0 
dense_4 Dense (None, 1) 65 

Total params: 51557121 (196.67 MB), Trainable params: 51555201 (196.67 MB), Non-trainable params: 1920 (7.50 KB) 

3.7.3 Model Training and Hyperparameter Tuning 

The model underwent extensive training to discover discriminative patterns 
from manufactured features. Model-specific hyperparameters such as the learning 
rate in CNN were optimized during the training phase. To determine the ideal 
parameter values that resulted in higher classification performance, hyperparameter 
tuning approaches such as grid search and cross-validation were used. Transfer 
learning and fine-tuning strategies were explored to exploit the potential of pre-
trained models and take advantage of their learned representations. The CNN model 
architecture was built using weights from a pre-trained VGG16 model and then 
refined with data from the research challenge. The model was fine-tuned to match 
the learned features to the intricacies of real and GAN-generated human face 
classification tasks. 

3.8 Evaluation Matrix 

Scoring machine learning models is an important part of any classification process 
as it provides insight into how the model is performing and enables more informed 
decisions. The precise classification of real and GAN-generated human faces depends 
on the rigorous evaluation of the machine learning models used in this study. This 
section examines the scoring matrix used to assess model performance, including 
the metrics used, their interpretation, and their relevance to the research goals. 

3.8.1 Evaluation Metrics 

To assess the performance of the machine learning models in categorizing real and 
GAN-generated human faces, a set of comprehensive assessment measures were 



used. These measurements include accuracy, precision, recall, F1 score, and area 
under the Receiver Operating Characteristic Curve (AUC-ROC). 

To assess the performance of the machine learning models in categorizing real 
and GAN-generated human faces, a set of comprehensive assessment measures were 
used. These measurements include accuracy, precision, recall, F1 score, and area 
under the Receiver Operating Characteristic Curve (AUC-ROC).  

1. Accuracy is a fundamental parameter that quantifies the proportion of 
correctly identified examples relative to the total number of occurrences. 
While accuracy provides a general picture of model performance, it can be 
misleading in unbalanced datasets where one class is dominant (Brabec, 2018). 

2. Precision measures the proportion of truly positive predictions out of all 
positive predictions. This is particularly important when the cost of false 
positives is significant, such as when GAN-generated images are falsely 
flagged as genuine (Dinga et al., 2019).  

3. Recall (Sensitivity): Recall calculates the proportion of correct positive 
predictions compared to correct positive cases. This is especially important 
when the cost of false negatives is significant, such as when actual photos are 
incorrectly labeled as GAN generated.  

4. The F1 score is the harmonious mean of precision and memory and provides 
a balanced picture of a model's performance. This is useful when a balance 
between precision and recall is required. 

5. AUC-ROC: The AUC-ROC metric evaluates the model's ability to distinguish 
between two classes at different probability thresholds. It calculates the area 
under the curve by plotting the true positive rate (TPR) versus the false positive 
rate (FPR). AUC-ROC is particularly useful for unbalanced datasets as it 
provides a single value that summarizes the model's discriminative ability. 

3.8.2 Interpretation and Analysis 

The interpretation of these measurements in the context of this study is 
crucial. High accuracy can mean good performance, but it can be deceiving with 
unbalanced data sets. Precision and recall are important indicators of the model's 
ability to reliably classify real and GAN-generated faces while minimizing false 
positives and false negatives. The F1 score combines these two factors and provides 
an overall assessment of the effectiveness of the model. AUC-ROC is resistant to class 
imbalances and provides information on how well the model discriminates between 
classes. 

3.8.3 Cross-Validation and Test Set Evaluation 

Cross-validation techniques were used to confirm the reliability and 
generalizability of the model. The dataset was divided into training and validation 
sets using K-fold cross-validation to ensure that each instance was used for both 
training and validation. Overfitting was avoided and the assessment results were 



more robust. In addition, the machine learning models were evaluated using a 
separate test set that was not used during model building. This provided objectivity 
in the review and revealed the model's performance on previously undisclosed data, 
reflecting its potential usefulness in practice. 

3.9 Methodology 

Once downloaded, the data set is pre-processed by normalizing the pixel 
values and scaling the photos to a standard size. The model is then trained after a 
model architecture suitable for the task has been determined. After the model has 
been trained, its performance is tested on the validation set. The performance of the 
model can be further improved by adjusting the hyperparameters such as learning 
rate, stack size, and number of epochs. The quality of the data, the adequacy of the 
model architecture, and the effectiveness of the hyperparameter tuning have a 
significant impact on the classifier's performance; As a result, the development 
process of an image classifier will be iterative, involving numerous rounds of 
experimentation and refinement. 

4. Results 

4.1 Exploratory Data Analysis 

This section provides the key insights and findings from the Exploratory Data 
Analysis (EDA) datasets consisting of real and GAN-generated human faces. The 
following points provide a quick overview of the EDA performed on the data set. 

4.1.1 Dataset Visualization 

In the first step of EDA, the dataset is visually examined. For closer inspection, 
random selection of images was selected. Visually examining these selections 
revealed variations between the images like colour profile, different image 
orientations, different lighting conditions, and the presence of background noise and 
artifacts in certain photos. These results typically provide important insights into the 
real-world nature of the datasets. In the current dataset, these differences in visual 
properties are not as drastic and required only minor cleaning and standardization. 



Figure 1 Random selection of images  

 

Almost 5% of the randomly selected images did not meet the acceptable 
threshold for direct use in the model. However, the remaining 95% of the photos met 
the required uniformity and quality standards so they could be immediately 
integrated into the model. This significant variance in image selection highlights the 
need for a more rigorous image selection method to ensure that all data inputs 
consistently meet the model's prescribed standards, improving overall performance 
and reliability. 

The dataset included 10,000 real images and 10,000 images generated by GANs. 
Photos were methodologically divided into training, testing, and validation sets to 
support effective machine learning. The training set contained 12,000 unique photos, 
while the remaining 8,000 were divided equally between the test and validation sets. 
These splits were made with extreme caution to avoid biased splits. This targeted 
method protects against imbalances in the training set and improves the robustness 
and fairness of the performance evaluation and training process of our machine 
learning models. 

Table 4 Train-Test-Validation Splits 

Counts Training Set Test Set Validation Set Total 
Total Image 
Count 

12,000 4,000 4,000 20,000 

Real Image 
Count 

6,000 2,000 2000 10,000 

 

Key image statistics were methodologically calculated to improve the 
understanding of the quantitative characteristics of the dataset. Calculating essential 
image statistics such as mean pixel values, standard deviation, and colour 



distribution analysis is critical when compiling the collection. These statistical 
indicators are systematically calculated to minimize and eliminate bias in the 
training set. This ensures that our machine learning models are trained on a fairer 
and more representative data set, reducing the possibility of biased performance 
differences, and promoting fair and accurate learning outcomes. 

Table 5 Image Statistics 

Number of Images 12,000 
Average Image Size (KB) 429.442 
Mean of Mean Pixel Values 112.699 

 

The colour channels of the image graph provide interesting insights into the data set. 
A wide range of skin tones, lighting conditions and background settings are 
represented in the graphic through differences in colour profiles between photos. 
Although these differences are rather small, they highlight the relevance of the 
datasets to the real world by reflecting the underlying complexity of human faces in 
different environments. These variations highlight the need for a strong model that 
can detect such subtleties. 

Figure 2 Colour Channels of Train set 

 



Figure 3 Edge Counts of the Train Set 

 

The image edge count graph provides a unique perspective. It highlights the 
presence of sharp edges in the images that can represent shapes and features on the 
face. What is interesting is that the diagram has different numbers of edges, which 
could indicate different image compositions and orientations. This result highlights 
the model's ability to reproduce facial representations with varying levels of detail, 
which is a critical component of classification accuracy.  

Figure 4 Colour Channels of Train and Test Splits 

 

Similarity tests of images were also conducted as part of the EDA to remove 
similar images from the dataset. Detecting such pairs was critical to identifying likely 
duplicate or near-duplicate images, which, if ignored, could introduce biases in 



model training and evaluation. By identifying these similarities, datasets diversity is 
managed while avoiding over-representation of individual image examples. 

4.2 Streamlit Dashboard 

The developed dashboard loads images from the dashboard folder, extract 
features from images, and then uses the trained model to predict the legitimacy of 
the images. Images with red overlay are incorrectly classified. The current dataset 
images as well as new set of test images can also be used fort this dashboard. 

Figure 5 Snapshot of the Streamlit Dashboard 

 

4.3 Error Analysis 

Error analysis is a crucial component in assessing the performance of a classification 
model. It requires a thorough investigation of the models' misclassifications and an 
understanding of why these errors occur. By conducting error analysis, one can learn 
more about the limitations of the model and potential areas for development. 

4.3.1 Types of Misclassifications: 

Misclassifications related to the classification of real and synthetic human faces can 
be broadly divided into the following categories: False positives: Images that were 
classified as real but were GAN-generated. False negatives are images that have been 
labelled as synthetic but are real. 



5. Discussions 

5.1 Accuracy and Generalization 

The model's astonishing 98.5% accuracy in image categorization is a 
remarkable, especially for tasks with complex visual inputs. This level of precision 
demonstrates the model's ability to recognize detailed patterns and features in 
photos, making precise predictions on previously unseen data. Importantly, the 
model's ability to automatically extract relevant visual information, rather than the 
names of the images, is crucial to success. Using the VGG-16 model as a feature 
extractor is crucial to the performance of our model. VGG-16 was trained on large 
datasets to capture basic visual properties. This allows images to be categorized into 
numerous categories, including distinguishing between real and fake images. 

Table 6 Model Metrics 

Metric Real Images GAN-Generated 

Accuracy 0.985 0.985 

Precision 0.982 0.988 

Recall 0.988 0.982 

F1 Score 0.985 0.985 

 
Figure 6 Accuracies and Loss Over Epochs 

 
In particular, the precision of the model not necessarily indicate overfitting. 

Overfitting is a typical problem in machine learning where a model is heavily fitted 
to the training data, resulting in poor generalization. On the other hand, the 
consistent accuracy of our model across training, testing, and validation datasets 
demonstrates its robustness and lack of overfitting.  



5.2 Data Distribution and Imbalance 

Before diving into the model's performance, it's essential to consider the data 
distribution across different datasets. We have a total of 20,000 images, with 10,000 
being real images and the remaining 10,000 being of another class. This balanced 
dataset ensures that the model is not biased toward any class, contributing to its 
generalization ability. 

5.3 Challenges in Classifying Orientation 

While our model excels in classifying images as real or another class, it encounters 
difficulties when classifying images based on the orientation of the person in the 
picture. Specifically, it struggles to correctly identify instances where there is another 
person in the image or when the person is facing at an angle. 

Figure 7 Random Misclassified Images 

 

5.3.1 Multiple Persons in the Image 

One of the difficulties the model faces is distinguishing between photos with a 
single person and those with many people. Because it focuses on identifying the 
presence of a person rather than their number, the model may misclassify photos 
containing more than one person as real images. To solve this problem, future 
improvements could include using object detection techniques to accurately count 
the number of people in an image. 

5.3.2 Angled Orientation 

Another area where the model struggles is that the person in the image is not 
looking directly at the camera, but at an angle. This can lead to misclassifications 
because the model may not correctly capture people's distinguishing characteristics. 
Advanced approaches such as posture estimation could be incorporated into the 
model to better understand an individual's orientation toward improving 
performance in such cases. 



5.4 Ethical Implication of the research 

Using secondary datasets downloaded from the internet to categorize actual 
and AI-generated human faces raises several ethical questions. The use of existing 
datasets initially raises concerns about the consent and privacy of the people depicted 
in such photos. The privacy rights of people whose photos are included in the datasets 
could be violated without the necessary authorization or anonymization. It is 
important and hence the data used in this project is ethically sourced and sufficiently 
anonymized, as maintaining privacy is a key ethical concept. 

Ethical requirements for AI initiatives also include transparency and 
responsible disclosure. To promote ethical AI development, it is critical to clearly 
describe the sources and procedures used in collecting and preparing datasets and 
provide insight into model limitations. In summary, although the experiment 
hopefully helps to improve image categorization, it is important to recognize the 
moral implications of using online secondary datasets. To maintain the highest 
ethical standards in AI research and development, ethical issues such as privacy, 
bias, openness, and responsible disclosure is carefully considered. 

6. Conclusion 

6.1 Summary 

In this study, an efficient and optimal method of classifying real human faces 
from AI generated faces, a CNN model was built to categorize real and GAN-produced 
human faces. The model managed to classify real and GAN-generated images with an 
accuracy of around 98.5%.  Literature review was conducted to identify the current 
trends in artificial face generation, its problems, and methods for recognizing the 
faces generated by AI. The VGG-16 model was used to identify the distinguishing 
features. Thorough data preprocessing, comprehensive exploratory data analysis, 
and intelligent error analysis have resulted in the creation of a strong machine 
learning model with excellent accuracy. The model is evaluated using various metrics 
to evaluate the performance of the model on the test data. Possible ways to improvise 
the current methods of AI-generated faces were evaluated and the final model was 
implemented. The final phase of the model development process involved creating a 
dynamic dashboard using Streamlit. This is intended to carry out image 
categorization in real time. This interactive dashboard combines the power of our 
trained model with a pre-trained VGG-16 model to process a random selection of 
existing photos from the dataset as well as completely new images, demonstrating 
the model's capabilities in an easy-to-use interface. A balanced dataset and solid 
training enabled our model to achieve outstanding accuracy. Overall, the 
performance of our model is promising for practical image classification tasks, but 
there is still room for development in dealing with tricky situations. 

6.2 Future Directions and Improvements 

To further enhance our model's performance, several avenues for improvement can 
be explored: 



1. Data Augmentation: The model can better handle orientation 
differences and multiple people in photos by expanding the diversity of 
training data through data augmentation approaches. 

2. Pose Estimation: Incorporating pose estimation models can increase 
classification accuracy by correctly identifying the orientation of 
people in photos.  

3. Object detection: The use of methods to count the number of people in 
photos can help minimize misclassifications. 

4. Human Feedback: To pinpoint misclassifications and improve the 
model accordingly, feedback can be obtained from human annotators 
to identify misclassifications. 

5. Faces transformed from real images: Instead of creating fake faces, 
techniques such as using machine learning algorithms to completely 
alter the structure of real faces can go unnoticed. 

6. Explainability and interpretability: While high accuracy is undoubtedly 
a useful indicator, it is also important to consider how interpretable and 
explainable our models' predictions are. To build confidence in the 
model's predictions, one must understand why it made a particular 
choice, especially in complex situations. To see which areas of the 
image the model focuses on when predicting, strategies such as 
gradient-based class activation maps (CAM) can be used. This can 
provide insights into the model's decision-making process. 

6.3 Critical Reflection 

Developing a project to categorize real and AI-generated human faces using a 
CNN model was an exciting and challenging adventure that led to critical self-
reflection on my learning process. Recognizing the dynamic nature of the field is one 
of the key takeaways from this endeavour. Throughout the project, I experienced the 
rapid development of AI-generated material, forcing me to constantly update my 
knowledge and change my approach. This experience highlighted the importance of 
staying current in the rapidly changing field of artificial intelligence. 

The initiative also made me aware of the difficulties and moral dilemmas 
associated with AI-generated material. The more I delved into the intricacies of 
distinguishing between real and artificial photos, the more I became aware of the 
potential impacts of misclassification, such as the spread of false information and 
privacy issues. This made me more aware of the ethical obligations that come with 
working in deep learning and AI and motivated me to approach future initiatives with 
more ethical rigor. The project also demonstrated the value of thorough data 
preparation. A crucial part of the model development was collecting and curating a 
data set that accurately represented both actual and AI-generated faces. I discovered 
the importance of diverse and high-quality data because it has a direct impact on the 
success of the model.  This project improved my technological skills while expanding 
my understanding of the moral and practical implications of using AI-generated 
material. 
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8. Appendix 

8.1 Appendix 1 (Ethics Approval) 

 
 

8.2 Appendix 2 (Code) 

00_files_rename.py 
import os 

 

# Define the paths to the folders containing the images 

real_people_folder = r"C:\Users\iamsa\Documents\Dissertation\Datasets\real" 

gan_faces_folder = r"C:\Users\iamsa\Documents\Dissertation\Datasets\fake" 

real_factor = 1 

fake_factor = 2 

# Function to rename images based on series 

def rename_images(folder_path, series_number): 

    for idx, filename in enumerate(sorted(os.listdir(folder_path))): 

        if filename.endswith('.jpg') or filename.endswith('.png'): 

            new_name = f'{series_number + 9 * idx:09d}.jpg' 

            os.rename(os.path.join(folder_path, filename), 

os.path.join(folder_path, new_name)) 

 

 

# Rename images in the real people folder using Series 1 

rename_images(real_people_folder, real_factor) 

 



# Rename images in the GAN generated faces folder using Series 2 

rename_images(gan_faces_folder, fake_factor) 

 

01_test_train_val_splits.py 
import os 

import random 

import shutil 

 

# Set a random seed for reproducibility 

random_seed = 42 

random.seed(random_seed) 

 

# Define the paths to the folders containing real and fake images 

real_people_folder = r"C:\Users\iamsa\Documents\Dissertation\Datasets\real" 

gan_faces_folder = r"C:\Users\iamsa\Documents\Dissertation\Datasets\fake" 

 

# Define paths for train, validation, and test folders 

train_folder = r"C:\Users\iamsa\Documents\Dissertation\Directories\train" 

val_folder = r"C:\Users\iamsa\Documents\Dissertation\Directories\val" 

test_folder = r"C:\Users\iamsa\Documents\Dissertation\Directories\test" 

 

# Total number of images desired in each set 

total_images_per_set = 20000 

 

# Train-validation-test split ratios (adjust as needed) 

train_ratio = 0.6  # 60% of the data for training 

val_ratio = 0.2   # 20% of the data for validation, the rest for testing 

 

# Function to clean and create folders 

def clean_and_create_folder(folder_path): 

    if os.path.exists(folder_path): 

        shutil.rmtree(folder_path) 

    os.makedirs(folder_path) 

 

# Clean and create train, validation, and test folders 

clean_and_create_folder(train_folder) 

clean_and_create_folder(val_folder) 

clean_and_create_folder(test_folder) 

 

# Function to copy and split images 

def split_images(src_folder, dest_folder, num_images): 

    image_files = os.listdir(src_folder) 

    selected_images = random.sample(image_files, num_images) 

 

    for image in selected_images: 

        src_path = os.path.join(src_folder, image) 

        dest_path = os.path.join(dest_folder, image) 

        shutil.copy(src_path, dest_path) 

 

# Determine the number of real and fake images needed based on the total 

num_real_images = total_images_per_set // 2 

num_fake_images = total_images_per_set // 2 

 

# Calculate the number of images for train, validation, and test sets 

num_real_train = int(num_real_images * train_ratio) 

num_real_val = int(num_real_images * val_ratio) 

num_real_test = num_real_images - num_real_train - num_real_val 

 

num_fake_train = int(num_fake_images * train_ratio) 



num_fake_val = int(num_fake_images * val_ratio) 

num_fake_test = num_fake_images - num_fake_train - num_fake_val 

 

# Copy and split real images 

split_images(real_people_folder, train_folder, num_real_train) 

split_images(real_people_folder, val_folder, num_real_val) 

split_images(real_people_folder, test_folder, num_real_test) 

 

# Copy and split fake images 

split_images(gan_faces_folder, train_folder, num_fake_train) 

split_images(gan_faces_folder, val_folder, num_fake_val) 

split_images(gan_faces_folder, test_folder, num_fake_test) 

 

print("Images successfully split into train, validation, and test sets.") 

 

02_00_split_balance_check.py 
import os 

 

# Define a list of paths to the folders containing test images 

test_folders = [ 

    r"C:\Users\iamsa\Documents\Dissertation\Directories\val", 

    r"C:\Users\iamsa\Documents\Dissertation\Directories\test", 

    r"C:\Users\iamsa\Documents\Dissertation\Directories\train", 

    # Add more folder paths here as needed 

] 

 

# Function to check if an image is real or fake based on its name 

def check_real_or_fake(image_name): 

    number = int(image_name[:-4])  # Remove the file extension and convert 

the remaining part to an integer 

 

    if (number - 1) % 9 == 0: 

        return "Real"  # Images from Series 1 are real 

    elif (number - 2) % 9 == 0: 

        return "Fake"  # Images from Series 2 are fake 

    else: 

        return "Unknown"  # Images with other numbers are not assigned to a 

series 

 

# Loop through each test folder 

for test_folder in test_folders: 

    num_real = 0 

    num_fake = 0 

 

    # Check real or fake for images in the current test folder 

    for filename in os.listdir(test_folder): 

        if filename.endswith('.jpg') or filename.endswith('.png'):  # 

Adjust the file extensions as needed 

            result = check_real_or_fake(filename) 

            if result == "Real": 

                num_real += 1 

            elif result == "Fake": 

                num_fake += 1 

            #print(f"{filename}: {result}") 

 

    # Calculate the total number of test images in the current folder 

    total_test_images = num_real + num_fake 

 

    # Calculate the percentage of real and fake images in the current 



folder 

    percentage_real = (num_real / total_test_images) * 100 

    percentage_fake = (num_fake / total_test_images) * 100 

 

    # Print the results for the current folder 

    print(f"Folder: {test_folder}") 

    print(f"Total Real Images: {num_real}") 

    print(f"Total Fake Images: {num_fake}") 

    print(f"Percentage of Real Images: {percentage_real:.2f}%") 

    print(f"Percentage of Fake Images: {percentage_fake:.2f}%") 

    print() 

02_01_rgb_edges.py 
import os 

import numpy as np 

import matplotlib.pyplot as plt 

from PIL import Image 

import cv2 

import pandas as pd 

 

# Define the path to the folder containing your standardized face image 

dataset 

dataset_folder = r"C:\Users\iamsa\Documents\Dissertation\Directories\train" 

 

# Initialize lists to store image statistics 

image_files = [] 

color_histograms = [] 

edge_counts = [] 

 

# Process each face image in the dataset folder 

for image_file in os.listdir(dataset_folder): 

    if image_file.endswith(('.png', '.jpg', '.jpeg')): 

        image_path = os.path.join(dataset_folder, image_file) 

 

        # Open the image using Pillow (PIL) 

        image = Image.open(image_path) 

        image = np.array(image)  # Convert to numpy array 

 

        # Calculate color histogram 

        color_hist = cv2.calcHist([image], [0, 1, 2], None, [8, 8, 8], [0, 

256, 0, 256, 0, 256]) 

        color_hist = color_hist.flatten() 

        color_hist = color_hist / np.sum(color_hist)  # Normalize the 

histogram 

 

        # Calculate edge count using Canny edge detection 

        gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) 

        edges = cv2.Canny(gray_image, 100, 200) 

        edge_count = np.sum(edges) 

 

        # Store image statistics in lists 

        image_files.append(image_file) 

        color_histograms.append(color_hist) 

        edge_counts.append(edge_count) 

 

# Create a DataFrame to store the image statistics 

image_stats_df = pd.DataFrame({ 

    'Image File': image_files, 

    'Color Histogram': color_histograms, 

    'Edge Count': edge_counts 

}) 



 

# Visualize color histograms as a stacked bar chart 

colors = ['red', 'green', 'blue'] 

plt.figure(figsize=(12, 6)) 

for i, color in enumerate(colors): 

    color_values = [hist[i] for hist in image_stats_df['Color Histogram']] 

    plt.hist(color_values, bins=20, alpha=0.7, color=color, label=f'Channel 

{i + 1}') 

 

plt.xlabel('Color Value') 

plt.ylabel('Frequency') 

plt.title('Color Channels') 

plt.legend() 

plt.grid() 

plt.savefig('Color_Channels.png', dpi=600, bbox_inches='tight') 

plt.show() 

 

# Histogram of Edge Counts 

plt.figure(figsize=(10, 5)) 

plt.hist(image_stats_df['Edge Count'], bins=20, color='purple', alpha=0.7) 

plt.xlabel('Edge Count') 

plt.ylabel('Frequency') 

plt.title('Edge Counts') 

plt.grid() 

plt.savefig('Edge_Counts.png', dpi=600, bbox_inches='tight') 

plt.show() 

02_02_color_channels.py 
import os 

import cv2 

import matplotlib.pyplot as plt 

import numpy as np 

 

# Function to calculate and plot color histograms 

def plot_color_histograms(folder_path, folder_name, ax): 

    # Initialize lists to store histograms for each channel 

    red_histogram = [] 

    green_histogram = [] 

    blue_histogram = [] 

 

    # Iterate through images in the folder 

    for filename in os.listdir(folder_path): 

        if filename.endswith('.jpg'): 

            image_path = os.path.join(folder_path, filename) 

            image = cv2.imread(image_path) 

 

            # Calculate histograms for each color channel 

            hist_red = cv2.calcHist([image], [0], None, [256], [0, 256]) 

            hist_green = cv2.calcHist([image], [1], None, [256], [0, 256]) 

            hist_blue = cv2.calcHist([image], [2], None, [256], [0, 256]) 

 

            # Normalize histograms 

            hist_red /= hist_red.sum() 

            hist_green /= hist_green.sum() 

            hist_blue /= hist_blue.sum() 

 

            # Append histograms to the lists 

            red_histogram.append(hist_red) 

            green_histogram.append(hist_green) 

            blue_histogram.append(hist_blue) 

 



    # Convert lists to NumPy arrays for plotting 

    red_histogram = np.array(red_histogram) 

    green_histogram = np.array(green_histogram) 

    blue_histogram = np.array(blue_histogram) 

 

    # Plot histograms 

    ax.plot(red_histogram.mean(axis=0), color='red', label='Red Channel') 

    ax.plot(green_histogram.mean(axis=0), color='green', label='Green 

Channel') 

    ax.plot(blue_histogram.mean(axis=0), color='blue', label='Blue 

Channel') 

 

    ax.set_title(f'Color Channel Histograms - {folder_name}') 

    ax.legend() 

 

# Path to your image folders 

folder1_path = r"C:\Users\iamsa\Documents\Dissertation\Directories\train" 

folder2_path = r"C:\Users\iamsa\Documents\Dissertation\Directories\test" 

 

# Create a single chart with color histograms for both folders 

plt.figure(figsize=(12, 6)) 

ax1 = plt.subplot(1, 2, 1) 

plot_color_histograms(folder1_path, 'Train Folder', ax1) 

 

ax2 = plt.subplot(1, 2, 2) 

plot_color_histograms(folder2_path, 'Test Folder', ax2) 

 

plt.tight_layout() 

plt.savefig('colorchannel.png', dpi=600, bbox_inches='tight') 

plt.show() 

 

03_feature_engineering.py 
import os 

import numpy as np 

from keras.preprocessing.image import load_img, img_to_array 

from keras.applications.vgg16 import VGG16, preprocess_input 

from keras.models import Model 

import cv2 

 

# Load the VGG16 model without the top (classification) layers 

base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 

224, 3)) 

 

# Extract features from a specific layer 

layer_name = 'block5_conv2' 

feature_extractor = Model(inputs=base_model.input, 

outputs=base_model.get_layer(layer_name).output) 

 

# Set the path to your image folders and feature save folder 

train_images_path   = 

r"C:\Users\iamsa\Documents\Dissertation\Directories\train" 

val_images_path     = 

r"C:\Users\iamsa\Documents\Dissertation\Directories\val" 

test_images_path    = 

r"C:\Users\iamsa\Documents\Dissertation\Directories\test" 

features_save_path  = 

r"C:\Users\iamsa\Documents\Dissertation\Directories\features" 

 

# Function to extract features from an image 



def extract_features(image_path, feature_extractor): 

    img = load_img(image_path, target_size=(224, 224))  # Load image and 

resize 

    img_array = img_to_array(img)  # Convert image to array 

    img_array = np.expand_dims(img_array, axis=0)  # Expand dimensions for 

the model 

    img_array = preprocess_input(img_array)  # Preprocess the image 

    features = feature_extractor.predict(img_array)  # Extract features 

    return features.flatten()  # Flatten the features into a 1D array 

 

 

# Set the target size for resizing 

target_size = (224, 224) 

 

# Function to resize images in a folder 

def resize_images(folder_path, target_size): 

    for filename in os.listdir(folder_path): 

        image_path = os.path.join(folder_path, filename) 

        img = cv2.imread(image_path) 

        img_resized = cv2.resize(img, target_size) 

        cv2.imwrite(image_path, img_resized) 

 

# Resize images in train folder 

resize_images(train_images_path, target_size) 

 

# Resize images in test folder 

resize_images(test_images_path, target_size) 

 

# Resize images in validation folder 

resize_images(val_images_path, target_size) 

 

print("Images resized to 256x256.") 

 

 

# Create directories for saving features 

os.makedirs(features_save_path, exist_ok=True) 

 

# Extract and save features for train images 

for filename in os.listdir(train_images_path): 

    image_path = os.path.join(train_images_path, filename) 

    features = extract_features(image_path, feature_extractor) 

    save_path = os.path.join(features_save_path, 

f"{filename.split('.')[0]}.npy") 

    np.save(save_path, features) 

 

print("Features extracted and saved for train images.") 

 

 

# Extract and save features for validation images 

for filename in os.listdir(val_images_path): 

    image_path = os.path.join(val_images_path, filename) 

    features = extract_features(image_path, feature_extractor) 

    save_path = os.path.join(features_save_path, 

f"{filename.split('.')[0]}.npy") 

    np.save(save_path, features) 

 

print("Features extracted and saved for validation images.") 

 

 

# Extract and save features for test images 

for filename in os.listdir(test_images_path): 



    image_path = os.path.join(test_images_path, filename) 

    features = extract_features(image_path, feature_extractor) 

    save_path = os.path.join(features_save_path, 

f"{filename.split('.')[0]}.npy") 

    np.save(save_path, features) 

 

print("Features extracted and saved for test images.") 

 

04_train_model.py 
import os 

import numpy as np 

from sklearn.model_selection import train_test_split 

from keras.models import Sequential 

from keras.layers import Dense, BatchNormalization, Dropout 

from keras.optimizers import Adam 

from sklearn.metrics import accuracy_score 

import matplotlib.pyplot as plt 

 

# Set the path to your feature data 

features_save_path = 

r"C:\Users\iamsa\Documents\Dissertation\Directories\features" 

 

# Load the features and generate labels based on image names 

train_features = [] 

train_labels = [] 

 

for filename in os.listdir(features_save_path): 

    if filename.endswith(".npy"): 

        feature_path = os.path.join(features_save_path, filename) 

        label = filename.split('.')[0] 

        features = np.load(feature_path) 

        train_features.append(features) 

 

        # Generate labels based on the image name 

        image_number = int(label) 

        if (image_number - 1) % 9 == 0: 

            train_labels.append(1)  # Real image 

        elif (image_number - 2) % 9 == 0: 

            train_labels.append(0)  # GAN-generated image 

 

# Convert lists to numpy arrays 

train_features = np.array(train_features) 

train_labels = np.array(train_labels) 

 

# Split the data into train and validation sets 

X_train, X_val, y_train, y_val = train_test_split(train_features, 

train_labels, test_size=0.2, random_state=42) 

 

# Build the model 

model = Sequential() 

model.add(Dense(512, activation='relu', 

input_shape=(train_features.shape[1],))) 

model.add(BatchNormalization()) 

model.add(Dropout(0.5)) 

 

model.add(Dense(256, activation='relu')) 

model.add(BatchNormalization()) 

model.add(Dropout(0.5)) 

 

model.add(Dense(128, activation='relu')) 



model.add(BatchNormalization()) 

model.add(Dropout(0.5)) 

 

model.add(Dense(64, activation='relu')) 

model.add(BatchNormalization()) 

model.add(Dropout(0.5)) 

 

model.add(Dense(1, activation='sigmoid')) 

 

# Compile the model 

model.compile(optimizer=Adam(lr=0.001), loss='binary_crossentropy', 

metrics=['accuracy']) 

 

# Print the model architecture 

model.summary() 

 

# Initialize lists to store training history 

train_loss_history = [] 

train_accuracy_history = [] 

val_loss_history = [] 

val_accuracy_history = [] 

 

# Train the model and record history 

epochs = 10 

for epoch in range(epochs): 

    history = model.fit(X_train, y_train, epochs=1, batch_size=32, 

validation_data=(X_val, y_val)) 

 

    # Record training and validation loss and accuracy 

    train_loss_history.append(history.history['loss'][0]) 

    train_accuracy_history.append(history.history['accuracy'][0]) 

    val_loss_history.append(history.history['val_loss'][0]) 

    val_accuracy_history.append(history.history['val_accuracy'][0]) 

 

    print( 

        f"Epoch {epoch + 1}/{epochs} - Loss: {train_loss_history[-1]:.4f} - 

Accuracy: {train_accuracy_history[-1]:.4f} - Val Loss: {val_loss_history[-

1]:.4f} - Val Accuracy: {val_accuracy_history[-1]:.4f}") 

 

# Plot training and validation loss 

plt.figure(figsize=(10, 5)) 

plt.subplot(1, 2, 1) 

plt.plot(range(1, epochs + 1), train_loss_history, label='Training Loss') 

plt.plot(range(1, epochs + 1), val_loss_history, label='Validation Loss') 

plt.xlabel('Epoch') 

plt.ylabel('Loss') 

plt.title('Loss Over Time') 

plt.legend() 

 

# Plot training and validation accuracy 

plt.subplot(1, 2, 2) 

plt.plot(range(1, epochs + 1), train_accuracy_history, label='Training 

Accuracy') 

plt.plot(range(1, epochs + 1), val_accuracy_history, label='Validation 

Accuracy') 

plt.xlabel('Epoch') 

plt.ylabel('Accuracy') 

plt.title('Accuracy Over Time') 

plt.legend() 

 

plt.tight_layout() 



plt.show() 

 

# Evaluate the model 

val_predictions = model.predict(X_val) 

val_predictions_classes = np.round(val_predictions).flatten()  # Round to 0 

or 1 

val_accuracy = accuracy_score(y_val, val_predictions_classes) 

print("Validation Accuracy:", val_accuracy) 

 

# Save the trained model 

model_save_path = 

r"C:\Users\iamsa\Documents\Dissertation\Directories\model" 

os.makedirs(model_save_path, exist_ok=True) 

 

model.save(os.path.join(model_save_path, 'model.h5')) 

print("Trained model saved.") 

 

05_perf_metrics.py 
import os 

import numpy as np 

import matplotlib.pyplot as plt 

from keras.models import load_model 

from keras.preprocessing.image import load_img, img_to_array 

from keras.applications.vgg16 import VGG16, preprocess_input 

from keras.models import Model 

from sklearn.metrics import confusion_matrix, classification_report, 

accuracy_score, precision_score, recall_score, f1_score, roc_curve, auc 

 

# Load the trained model 

model_path = 

r"C:\Users\iamsa\Documents\Dissertation\Directories\model\model.h5" 

loaded_model = load_model(model_path) 

 

# Load the VGG16 model without the top (classification) layers 

base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 

224, 3)) 

 

# Set the path to your test images 

test_images_path = 

r"C:\Users\iamsa\Documents\Dissertation\Directories\test" 

 

# Extract features from VGG16 

def extract_features(image_array, feature_extractor): 

    features = feature_extractor.predict(image_array) 

    flattened_features = features.reshape(features.shape[0], -1) 

    return flattened_features 

 

layer_name = 'block5_conv2' 

 

# Initialize lists for ROC curve 

roc_labels = [] 

roc_scores = [] 

 

# Initialize counters for metrics 

tp_real = 0 

tn_real = 0 

fp_real = 0 

fn_real = 0 

tp_gan = 0 

tn_gan = 0 



fp_gan = 0 

fn_gan = 0 

 

# Process test images and calculate metrics 

for filename in os.listdir(test_images_path): 

    if filename.endswith(".jpg") or filename.endswith(".png"): 

        image_path = os.path.join(test_images_path, filename) 

 

        # Determine ground truth label based on the given formula 

        image_number = int(filename.split('.')[0]) 

        actual_label_real = (image_number - 1) % 9 == 0 

        actual_label_gan = (image_number - 2) % 9 == 0 

 

        # Load and preprocess the image for VGG16 

        target_size = (224, 224) 

        image = load_img(image_path, target_size=target_size) 

        image_array = img_to_array(image) 

        image_array = np.expand_dims(image_array, axis=0) 

        image_array = preprocess_input(image_array) 

 

        # Extract features using the VGG16 model 

        feature_extractor = Model(inputs=base_model.input, 

outputs=base_model.get_layer(layer_name).output) 

        features = extract_features(image_array, feature_extractor) 

 

        # Make predictions using the loaded model 

        prediction = loaded_model.predict(features) 

 

        # Compare predictions with actual labels 

        predicted_label_real = prediction[0][0] > 0.95 

        predicted_label_gan = not predicted_label_real 

 

        if actual_label_real: 

            if predicted_label_real: 

                tp_real += 1 

            else: 

                fn_real += 1 

        else: 

            if predicted_label_real: 

                fp_real += 1 

            else: 

                tn_real += 1 

 

        if actual_label_gan: 

            if predicted_label_gan: 

                tp_gan += 1 

            else: 

                fn_gan += 1 

        else: 

            if predicted_label_gan: 

                fp_gan += 1 

            else: 

                tn_gan += 1 

 

        # Append ground truth label and prediction score for ROC curve 

        roc_labels.append(actual_label_real) 

        roc_scores.append(prediction[0][0]) 

 

# Calculate metrics for real images 

accuracy_real = (tp_real + tn_real) / (tp_real + tn_real + fp_real + 

fn_real) if (tp_real + tn_real + fp_real + fn_real) > 0 else 0 



precision_real = tp_real / (tp_real + fp_real) if (tp_real + fp_real) > 0 

else 0 

recall_real = tp_real / (tp_real + fn_real) if (tp_real + fn_real) > 0 else 

0 

f1_score_real = 2 * (precision_real * recall_real) / (precision_real + 

recall_real) if (precision_real + recall_real) > 0 else 0 

 

# Calculate metrics for GAN-generated images 

accuracy_gan = (tp_gan + tn_gan) / (tp_gan + tn_gan + fp_gan + fn_gan) if 

(tp_gan + tn_gan + fp_gan + fn_gan) > 0 else 0 

precision_gan = tp_gan / (tp_gan + fp_gan) if (tp_gan + fp_gan) > 0 else 0 

recall_gan = tp_gan / (tp_gan + fn_gan) if (tp_gan + fn_gan) > 0 else 0 

f1_score_gan = 2 * (precision_gan * recall_gan) / (precision_gan + 

recall_gan) if (precision_gan + recall_gan) > 0 else 0 

 

# Calculate ROC curve for all images 

fpr, tpr, _ = roc_curve(roc_labels, roc_scores) 

roc_auc = auc(fpr, tpr) 

 

# Display metrics for real images 

print("Metrics for Real Images:") 

print("Accuracy:", accuracy_real) 

print("Precision:", precision_real) 

print("Recall:", recall_real) 

print("F1 Score:", f1_score_real) 

 

# Display metrics for GAN-generated images 

print("\nMetrics for GAN-Generated Images:") 

print("Accuracy:", accuracy_gan) 

print("Precision:", precision_gan) 

print("Recall:", recall_gan) 

print("F1 Score:", f1_score_gan) 

 

# Display ROC curve for all images 

plt.figure(figsize=(8, 6)) 

plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = 

{:.2f})'.format(roc_auc)) 

plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') 

plt.xlim([0.0, 1.0]) 

plt.ylim([0.0, 1.05]) 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title('ROC Curve for All Images') 

plt.legend(loc='lower right') 

plt.show() 

 

06_streamlit_app.py 
import streamlit as st 

import numpy as np 

import os 

from keras.models import load_model 

from keras.preprocessing.image import load_img, img_to_array 

from keras.applications.vgg16 import VGG16, preprocess_input 

from keras.models import Model 

from PIL import Image, ImageDraw 

 

# Load the trained model 

model_path = 

r"C:\Users\iamsa\Documents\Dissertation\Directories\model\model.h5" 

loaded_model = load_model(model_path) 



 

# Load the VGG16 model without the top (classification) layers 

base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 

224, 3)) 

 

 

# Extract features from VGG16 

def extract_features(image_array, feature_extractor): 

    features = feature_extractor.predict(image_array) 

    flattened_features = features.reshape(features.shape[0], -1) 

    return flattened_features 

 

 

layer_name = 'block5_conv2' 

 

 

# Function to make predictions and display results 

def predict_and_display(image_path): 

    target_size = (224, 224) 

    image = Image.open(image_path) 

    image = image.resize(target_size) 

    image_array = img_to_array(image) 

    image_array = np.expand_dims(image_array, axis=0) 

    image_array = preprocess_input(image_array) 

 

    feature_extractor = Model(inputs=base_model.input, 

outputs=base_model.get_layer(layer_name).output) 

    features = extract_features(image_array, feature_extractor) 

 

    prediction = loaded_model.predict(features) 

    predicted_label = 1 if prediction[0][0] > 0.5 else 0 

 

    # Get the image number from the filename 

    filename = os.path.basename(image_path) 

    image_number = int(filename.split('.')[0]) 

 

    # Determine actual class based on the formula 

    actual_label_real = (image_number - 1) % 9 == 0 

    actual_label_gan = (image_number - 2) % 9 == 0 

    actual_label = 1 if actual_label_real else 0 

 

    return image, predicted_label, actual_label 

 

 

# Streamlit app 

def main(): 

    import streamlit as st 

 

    # Centered title using Markdown 

    st.markdown("<h3 style='text-align: center;'>Real Human Faces 

Classifier</h3>", unsafe_allow_html=True) 

    st.markdown("<br>", unsafe_allow_html=True) 

 

    # Provide the folder path manually 

    folder_path = 

r"C:\Users\iamsa\Documents\Dissertation\Directories\test_sample" 

 

    image_files = [os.path.join(folder_path, filename) for filename in 

os.listdir(folder_path) if 

                   filename.endswith((".jpg", ".png"))] 

    st.markdown( 



        """ 

        <style> 

            button[title^=Exit]+div [data-testid=stImage]{ 

                text-align: center; 

                display: block; 

                margin-left: auto; 

                margin-right: auto; 

                width: 100%; 

            } 

        </style> 

        """, unsafe_allow_html=True 

    ) 

    num_images = len(image_files) 

    num_rows = min((num_images + 3) // 4, 4) 

 

    for row in range(num_rows): 

        col1, col2, col3, col4 = st.columns(4) 

 

        for col, image_path in zip((col1, col2, col3, col4), 

image_files[row * 4: (row + 1) * 4]): 

            image, predicted_label, actual_label = 

predict_and_display(image_path) 

 

            true_positive = (predicted_label == 1 and actual_label == 1) 

            true_negative = (predicted_label == 0 and actual_label == 0) 

            false_positive = (predicted_label == 1 and actual_label == 0) 

            false_negative = (predicted_label == 0 and actual_label == 1) 

 

            overlay = Image.new("RGBA", image.size, (255, 0, 0, 128)) if 

false_positive or false_negative else None 

            if overlay: 

                image = Image.alpha_composite(image.convert("RGBA"), 

overlay) 

 

            caption = "" 

            if true_positive: 

                caption += "True Positive\n" 

            if true_negative: 

                caption += "True Negative\n" 

            if false_positive: 

                caption += "False Positive\n" 

            if false_negative: 

                caption += "False Negative\n" 

 

            col.image(image, caption=caption, use_column_width=True) 

 

 

if __name__ == "__main__": 

    main() 

 

07_error_analysis.py 
import os 

import numpy as np 

import shutil  # To move files 

from keras.models import load_model 

from keras.preprocessing.image import load_img, img_to_array 

from keras.applications.vgg16 import VGG16, preprocess_input 

from keras.models import Model 

 



# Load the trained model 

model_path = 

r"C:\Users\iamsa\Documents\Dissertation\Directories\model\model.h5" 

loaded_model = load_model(model_path) 

 

# Load the VGG16 model without the top (classification) layers 

base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 

224, 3)) 

 

# Set the path to your test images 

test_images_path = 

r"C:\Users\iamsa\Documents\Dissertation\Directories\test" 

 

# Define output folders for misclassified images 

misclassified_real_folder = 

r"C:\Users\iamsa\Documents\Dissertation\Directories\misclassified_real" 

misclassified_gan_folder = 

r"C:\Users\iamsa\Documents\Dissertation\Directories\misclassified_gan" 

 

# Create the output folders if they don't exist 

os.makedirs(misclassified_real_folder, exist_ok=True) 

os.makedirs(misclassified_gan_folder, exist_ok=True) 

 

# Extract features from VGG16 

def extract_features(image_array, feature_extractor): 

    features = feature_extractor.predict(image_array) 

    flattened_features = features.reshape(features.shape[0], -1) 

    return flattened_features 

 

layer_name = 'block5_conv2' 

 

# Process test images and find misclassified images 

for filename in os.listdir(test_images_path): 

    if filename.endswith(".jpg") or filename.endswith(".png"): 

        image_path = os.path.join(test_images_path, filename) 

 

        # Determine ground truth label based on the given formula 

        image_number = int(filename.split('.')[0]) 

        actual_label_real = (image_number - 1) % 9 == 0 

        actual_label_gan = (image_number - 2) % 9 == 0 

 

        # Load and preprocess the image for VGG16 

        target_size = (224, 224) 

        image = load_img(image_path, target_size=target_size) 

        image_array = img_to_array(image) 

        image_array = np.expand_dims(image_array, axis=0) 

        image_array = preprocess_input(image_array) 

 

        # Extract features using the VGG16 model 

        feature_extractor = Model(inputs=base_model.input, 

outputs=base_model.get_layer(layer_name).output) 

        features = extract_features(image_array, feature_extractor) 

 

        # Make predictions using the loaded model 

        prediction = loaded_model.predict(features) 

 

        # Compare predictions with actual labels 

        predicted_label_real = prediction[0][0] > 0.7 

        predicted_label_gan = not predicted_label_real 

 

        # Move misclassified images to respective folders 



        if actual_label_real and not predicted_label_real: 

            shutil.copy(image_path, os.path.join(misclassified_real_folder, 

filename)) 

        elif actual_label_gan and not predicted_label_gan: 

            shutil.copy(image_path, os.path.join(misclassified_gan_folder, 

filename)) 

 

 

 

 

 


