
Adversarial Exploits: Classification of AI Generated Human Faces

A study submitted in partial fulfilment

of the requirements for the degree of

MSc in Data Science

at

THE UNIVERSITY OF SHEFFIELD

by

Sarath Tharayil Sreenivasan

220202134

Word Count: 9279 September 2023

Table of Contents

1. Introduction ... 5

1.1 Aims and Objectives .. 5

2. Literature Review ... 6

2.1 Artificial face generation techniques .. 6

2.2 Deep learning methods for face generation ... 7

2.3 Recognizing AI-generated images ... 9

2.4 Summary .. 9

2.5 Gaps in Literature .. 10

3 Methodology ... 11

3.1 Research Methodology ... 11

3.2 Data Search Strategy and Collection .. 12

3.3 Ethical Implications ... 13

3.4 Execution Platform .. 14

3.5 Data Preprocessing .. 15

3.5.1 Data Organisation.. 15

3.5.2 Image Standardization and Resizing ... 16

3.5.3 Normalization and Intensity Scaling ... 16

3.5.4 Data Augmentation ... 16

3.5.5 Train-Test-Validation Splits .. 17

3.6 Feature Engineering .. 17

3.7 Machine Learning Model ... 18

3.7.1 Binary Classification .. 18

3.7.2 Convolutional Neural Network (CNN) ... 18

3.7.3 Model Training and Hyperparameter Tuning .. 19

3.8 Evaluation Matrix .. 19

3.8.1 Evaluation Metrics .. 19

3.8.2 Interpretation and Analysis.. 20

3.8.3 Cross-Validation and Test Set Evaluation .. 20

3.9 Flow Chart and Methodologies used. .. 21

4. Results ... 21

4.1 Exploratory Data Analysis .. 21

4.1.1 Dataset Visualization ... 21

4.2 Streamlit Dashboard .. 25

4.3 Error Analysis ... 25

4.3.1 Types of Misclassifications: ... 25

5. Discussions... 26

5.1 Accuracy and Generalization .. 26

5.2 Data Distribution and Imbalance .. 27

5.3 Challenges in Classifying Orientation .. 27

5.3.1 Multiple Persons in the Image .. 27

5.3.2 Angled Orientation .. 27

5.4 Ethical Implication of the research ... 28

6. Conclusion ... 28

6.1 Summary .. 28

6.2 Future Directions and Improvements ... 28

6.3 Critical Reflection .. 29

7. References ... 30

8. Appendix .. 33

8.1 Appendix 1 (Ethics Approval) ... 33

8.2 Appendix 2 (Code) ... 33

Table of Figures

Figure 1 Random selection of images ... 22

Figure 2 Colour Channels of Train set .. 23

Figure 3 Edge Counts of the Train Set ... 24

Figure 4 Colour Channels of Train and Test Splits ... 24

Figure 5 Snapshot of the Streamlit Dashboard .. 25

Figure 6 Accuracies and Loss Over Epochs ... 26

Figure 7 Random Misclassified Images .. 27

Table of Tables

Table 1 Methodologies in Research .. 12

Table 2 Individual Image renaming criteria ... 16

Table 3 CNN Architecture ... 19

Table 4 Train-Test-Validation Splits ... 22

Table 5 Image Statistics ... 23

Table 6 Model Metrics .. 26

ABSTRACT

AIM

This paper develops and evaluates a Convolutional Neural Network (CNN)
model for classifying real human faces and faces created by Generative Adversarial
Networks (GANs). Its main goal is to accurately distinguish between real human facial
images and their AI-generated duplicates.

METHODS

The study uses a comprehensive methodology that includes a literature review
to understand the current state of artificial face generation, data preprocessing,
exploratory data analysis (EDA), feature extraction using the VGG-16 architecture,
model development, and the development of an interactive Streamlit dashboard for
real-time image classification. Future development areas include data augmentation,
position estimation, object identification, user feedback, and transformable actual
faces.

RESULTS

By classifying both real and GAN-generated images with an astonishing 98.5%
accuracy, the CNN model demonstrated its impressive generalization performance.
Although the model performed exceptionally well in binary classification, difficulties
were noted in separating orientations from situations involving many participants.
In terms of ethical considerations, AI research has placed an emphasis on privacy,
openness, and responsible disclosure.

CONCLUSION

This work successfully demonstrates the capabilities of CNN models in the
complex task of identifying real human faces from AI-generated faces. It highlights
the importance of ethical obligations associated with AI research efforts and the need
for responsible and open practices. Additionally, this project emphasizes the critical
value of rigorous data preparation and the importance of creating diverse training
data sets that accurately reflect real-world circumstances. This guarantees the
generalizability and ability of the models to be applied to a wide range of scenarios.
Finally, this study examines the nuances of model performance and possible
improvements, exploring options such as data augmentation, pose estimation, and
user feedback to further improve the model's capabilities.

1. Introduction

In the age of artificial intelligence (AI), the distinction between reality and
digital creation has become increasingly blurred (Jordan, 2009). Due to deep fake
videos, AI generated images and text, it is becoming increasingly difficult to tell what
is real and what is not. In a world where images generated by AI can be misused,
recognizing them appropriately is crucial. Berger (2014) states that all arts are going
digital, merging in transdisciplinarity and transmedia, further blurring the line
between reality and digital creation. The concept of AI has been around since the
1950s, with the development of computers and the ability to perform tasks that would
normally require human intelligence (Simon, 1993). But it was only with the
development of neural networks and deep learning algorithms that AI technology
really took off. Modern industries such as transportation, agriculture, medicine, and
many more have successfully embraced AI (Khan et al., 2021). As a result, AI has been
used to develop content that can mimic human speech, movement, and even
creativity.

Using AI to create or craft information based on user requests falls under AI-
generated content (Du et al., 2023). Images, videos, text and even music are examples
of this. AI has a wide range of possible applications, particularly in entertainment
and games, but these applications also come with significant difficulties. The ability
to produce highly realistic content that is difficult to spot raises questions about its
authenticity and the potential for misuse.

In today's digital environment, developing methods to reliably detect AI-
generated material is critical. The widespread use of AI-generated content, including
deepfakes and synthetic media, poses significant risks to society. False information,
malicious impersonations and fake news can undermine trust, damage reputations,
and undermine democratic processes (Hu, 2020). The integrity of information and
media must be protected by accurately identifying AI-generated content. It gives
people, organizations, and platforms the ability to distinguish real content from fake,
allowing them to make informed decisions and reduce potential harm (Meel &
Vishwakarma, 2020). The ability to properly identify AI-generated content is critical
for several reasons like to prevent the spread of misinformation and fake news that
can have serious consequences like damage to reputation or dissemination of
propaganda (Kreps et al., 2022).

1.1 Aims and Objectives

Deep learning techniques have evolved over the past decade, making it
increasingly easy to create images that are extremely photorealistic. As a result, it is
very difficult, if not impossible, for the average social media user today to identify
fake social media content and profiles in their feed (Rossi et al., 2022).

Research Aim:

RA1. To develop an efficient and optimal method of classifying real human faces
from AI generated faces.

It can be difficult to distinguish between what is real and what is fake, making
accurate labelling of fabricated content a problem. Complicating the issue further is
the possibility that some fake content was intentionally generated to look authentic,
making it difficult to pinpoint where it really came from. Also, due to the massive
amount of data generated each day, it is impractical to carefully screen each medium
for legitimacy. Using a standardized system that uses machine learning algorithms to
automatically recognize and classify AI-generated humans would be the ideal
approach. The overall goal of this system is to ensure that AI-generated individuals
are always identified as virtual and are not used to create false identities for unlawful
behaviour that could have serious repercussions on society, such as the loss of trust
and influencing public opinion.

Research Objectives:

RO1. Critical review of the literature on AI-generated faces and face classification
techniques.

RO2. To identify the features that distinguish real human faces from AI-generated
faces.

RO3. Development of a classification model using machine learning algorithms to
differentiate between real and AI-generated faces.

RO4. To evaluate the performance of the classification model by testing it on a large
data set of both real and artificial faces.

Research Question:

RQ1. How can current real and fabricated face classification methods be improved
to develop an optimal model to accurately classify real and AI-generated
human faces?

Structure of the Dissertation

The five chapters that make up the remaining parts are the literature review,
methodology, results, discussions and conclusion.

2. Literature Review

2.1 Artificial face generation techniques

In recent years, the involvement of artificial intelligence in the creation of
images has attracted a lot of attention (Liu & Yu, 2021). The use of AI-generated text,
audio, image, and video as a weapon for financial fraud, misinformation campaigns,
and non-consensual intimate photography is widespread (Nightingale and Farid
2022). Because of their many uses, face photos rank highly among the various

categories of real images (Abdolahnejad & Liu, 2020). Although face images are very
difficult to synthesize due to their highly complex hierarchical structure and the
uniqueness of the information contained in each individual face image, recent
advances in face synthesis and semantic manipulations have made it possible to
create artificial faces that are identical to real faces (Yegemberdiyeva & Amirgaliyev,
2021).

Bank et al. (2020) introduces autoencoder networks, a type of neural network
that can meaningfully compress and represent input data before decoding it to
produce input that is comparable to the original. By training the autoencoder with a
dataset of faces, they can be used to create new faces by sampling from latent space.
Variational autoencoders (VAE) that Kingma and Welling (2019) proposes use a
Bayesian approach to learn the probability distribution of the input data and apply it
to generate new samples. Ozkan and Ozkan (2018) proposes a kinship network that
can create a potential child's face by examining a picture of his parents. Sun et al.
(2014) demonstrates how deep learning can be used to create useful trait
representations that increase interpersonal differences while reducing intrapersonal
variability. AI-generated images have become increasingly complex and difficult to
distinguish from real-world images due to these breakthroughs in Generative
Adversarial Networks (GAN), autoencoders, and other AI technologies (Bang & Woo,
2021). The generated faces show that the AI algorithms have overcome the uncanny
valley and are now able to generate indistinguishable and reliable faces (Nightingale
& Farid, 2022). This is precisely why realistic faces produced by GANs are the subject
of media attention. In studies and surveys that attempted to quantify distinctness,
people have consistently been unable to reliably distinguish between all real and
synthetic images (Kas et al., 2020).

2.2 Deep learning methods for face generation

Deep learning methods, specifically Generative Adversarial Networks (GANs),
are used to create AI-generated human faces (Creswell et al., 2018). This is a method
of generative modelling is based on a game between two machine learning models,
the discriminator (D) and the generator (G), typically implemented using neural
networks (Goodfellow et al., 2020). D has access to both the training set and G’s
generations, and predicts the probability that the sample is from the training set or
from G (Creswell et al., 2018). At the same time, G only learns from interacting with
D and generates images without access to the actual images in the training set, and
its training procedure is to create generations and maximize the probability that D
makes a mistake (Goodfellow et al., 2014). The generator then modifies its output to
produce images that are more lifelike until the discriminator is no longer able to tell
the difference between actual and synthetic images. The four typical fake face
synthesis modes with different GANs are whole face synthesis, facial attribute
editing, facial expression manipulation, and Deepfakes (Stehouwer et al., 2019).

When training GANs, a low-variety training set causes the generator to spins
through a small range of output types and never learn its way out of the trap, leading
to a problem known as mode collapse (Ding et al., 2022). Another problem of
vanishing gradients arises when, during training, the gradients required to update
the neural network weights are propagated back through the layers of the network
and become very low. The network struggles to learn this because the weights are not
updated frequently enough (Su, 2018). As a result, we have different GAN types to
modify and fix the glitches in the current algorithm, or specially designed types for
specific purposes, different architectures or using new techniques.

There are different types of GANs that are made specifically for creating synthetic
human faces. These types of GANs use a variety of algorithms and architectures to
create highly realistic and detailed images of human faces with different
characteristics such as pose, expression, and background. Some of the different types
of GANs specifically used to generate human faces are as follows:

1. Progressive growing of GANs (ProGAN): This type initially produces low-
resolution images and gradually increases the resolution over time to produce
detailed and high-quality images of human faces. Instead of having to learn all
the scales at once, the training can first recognize the large-scale structure of
the image distribution before focusing on finer and finer scale details (Karras
et al., 2017).

2. Style-based GAN architecture (Style GAN): This is currently the most advanced
technique for high-resolution image synthesis (Karras et al., 2019). With this
method, the image synthesis process is broken down into two distinct steps:
creating a low-resolution image to capture fundamental aspects such as
posture and expression, and using a different network to encode style
information such as colour, texture, and fine detail (Karras et al., 2020).

3. Cycle-Consistent Generative Adversarial Network (CycleGAN): Unlike typical
GANs, CycleGAN is designed for image-to-image translation jobs. Two
different GANs are trained to fulfil the purpose of CycleGAN to learn a
mapping between two different types of images: one to create images in the
destination domain from photos in the source domain and another to create
images in the source domain from images in the destination domain ensuring
that the image translations are consistent in both directions (Wang & Lin,
2018).

4. Star Generative Adversarial Network (StarGAN): StarGAN is a powerful and
flexible model that uses a single generator network to produce realistic
renderings while changing one aspect of a given image to another, e.g., B. by
changing a person's facial expression from a smile to a frown (Choi et al.,
2018).

5. Self-Attention Generative Adversarial Network (SAGAN): This can generate
high-resolution images of human faces with greater attention to detail. It is

used to manipulate facial attributes, e.g., to remove or put on glasses, and uses
a self-attention technique to focus on key elements of the image.

Overall, from the literature available, GANs have become the preferred
technique for face manipulation and synthesis due to their generality, diversity,
realism, and efficiency.

2.3 Recognizing AI-generated images

Several techniques have been developed to recognize images generated by AI.
Rule-based methods and machine learning-based methods are two main groups that
these techniques can be divided into. Rule-based methods involve establishing
precise guidelines or standards that can be used to recognize images generated by
artificial intelligence, e.g., searching for patterns or artifacts that are common in
these images (Gu & Angelov, 2018). Techniques based on machine learning involve
teaching a machine learning model to recognize patterns and features in a data set of
real and AI-generated images. Wang et al. (2019) observe that the imperfection of the
upsampling methods it embodies could serve as an important advantage for GAN-
synthesized fake image detection and fake location. Much research has been done on
manipulations such as face switching, face re-enactment, and expression
modification, resulting in the development of a variety of useful techniques for
distinguishing between fake and authentic videos and images (Alamayreh & Barni,
2021). Empirically, a human is an animate being, while a machine is inanimate. The
line between human and AI seems to be blurred by the human-like artificial entities.
Our visual system's ability to recognize life in a face is referred as facial animation
perception (Koldewyn et al., 2014) and Xiang et al. (2022) use an adaptation paradigm
to explore how humans perceive animated faces.

Misidentification of AI-generated images can have serious repercussions on
people, businesses, and society at large. For instance, mistaking an AI-generated
image for a real-world image may cause misinformation or fake news to spread,
which may have serious repercussions for society (Burton & Soare, 2019).
Misidentifying an AI-generated image can also lead to ethical or legal problems, such
as when those photographs are used to make deepfake videos of people without their
permission. Since most of the research datasets, like Celeb-DF (Li et al., 2020), have
only recently been published and GANs were only developed in 2014 (Goodfellow et
al., 2014), the field of identifying AI-generated images is still new and there is much
room for future research. One promising area of research is the development of more
advanced machine learning models that can accurately identify AI-generated images.

2.4 Summary

The literature review provides a thorough analysis of current developments in
AI-generated facial synthesis, with a focus on the application of deep learning and
GANs. It draws attention to the proliferation of AI-generated content, including text,
audio, photos, and videos, that is used for unfortunate exploits like financial fraud

and smear campaigns. Because of its wide range of applications, creating realistic
human faces has attracted the most attention. Although facial structures are
inherently complicated, and each person's face is unique, recent advances in facial
synthesis and semantic manipulation techniques have enabled the creation of
artificial faces that are incredibly lifelike.

 The use of GANs is the predominant method for creating artificial faces in
machine learning. Despite the difficulties that GAN training brings, such as mode
collapse and vanishing gradient problems, which can limit the variety and quality of
faces generated, algorithmic developments have significantly improved the
performance of both discriminator and generator networks.

These developments have led to the creation of exceptionally high-quality
human faces, which often confuse the human participants and blur the line between
artificial and real images. As a result of this advancement in GAN-based face
synthesis, artificial intelligence-generated faces are now essentially
indistinguishable from real ones. From a machine learning perspective, these
advances highlight the amazing ability of GANs to discover complex patterns and
nuanced details in image datasets, ultimately achieving a level of realism that was
previously unattainable. These innovations have not only increased the potential of
computer vision but have also sparked important discussions about the moral and
societal implications of AI-generated material and warrant further study and
attention in the machine learning community.

Rule-based and machine learning-based methods can be used to categorize the
methods for identifying GAN-generated faces. In recent years, machine learning
technologies have replaced rule-based technologies as the preferred strategy. This
trend is partly due to the rapid developments in AI-generated image synthesis
models, which have made it more difficult to recognize patterns or artifacts typical
of AI-generated images based solely on predetermined criteria or standards.

Adopting a machine learning-based strategy is significant due to the problems
caused by the increasing number of fake human faces online. The spread of false
information, fake news, and moral and legal issues are sometimes due to the false
belief that AI-generated images are real. Such misidentifications can have far-
reaching effects on people, companies, and society. Additionally, AI-generated
image recognition is a relatively young and developing topic. This means that there
is still a lot of potential for study and improvement, especially when it comes to
creating more sophisticated machine learning models specifically designed for the
goal of identifying AI-generated photos. The continued development of AI technology
highlights the importance of state-of-the-art machine learning models and the need
for continuous research and innovation in the field of AI-generated image
identification.

2.5 Gaps in Literature

1. The lack of data on the effectiveness of AI-generated image identification
techniques represents a significant research gap. Although the review
explores multiple approaches to identifying AI-generated photos, it does not

provide information on how effective these strategies are. Future work should
focus on conducting thorough performance evaluations of these detection
methods and assess their robustness, accuracy, and false positive rates.

2. The review mentions the potential impact of misclassifying AI-generated
photos, but a more thorough analysis of the ethical and societal implications
would be beneficial. The impact of misidentification on people, businesses,
and society in general should be addressed, as should privacy and security
issues.

3. Due to the rapid development of AI-generated image synthesis techniques,
many publicly available datasets are no longer useful for training machine
learning models designed to categorize AI-generated images. These data sets
often do not capture the potential of today's generative models, especially
when it comes to creating synthetic content that is incredibly compelling and
realistic. There is an urgent need to create and disseminate new ethically
sourced datasets consistent with the current synthetic media landscape to
address the serious problems posed by the increase in AI-generated images.
These datasets should include a wide range of artificial intelligence (AI)-
generated content, such as deepfakes, altered faces and other types of
synthetic photography.

3 Methodology

This chapter describes the research methods used to achieve the study goals.
The thorough methodological framework of this study is detailed below.

3.1 Research Methodology

Research technique is critical to guiding the course of study and providing an
organized strategy for answering research questions. This section describes the
research methodology used to support study design, data collection, analysis, and
interpretation. This study uses a quantitative strategy to ensure a comprehensive
understanding of the classification of real and GAN-generated human faces. In
quantitative research, numerical data is collected and analysed using statistical
methods. In educational research, quantitative methods can be used to collect and
analyse data on a range of topics, including surveys, secondary data collection,
sampling, and experimental methods (Gorard, 2001). Since this is the classification
problem and describes what occurs and not why it occurs, the use of quantitative
methods is appropriate in this study.

Table 1 Methodologies in Research

Sl.No Quantitative Research Qualitative Research

1
Used to test or confirm theories or
assumptions using numbers and
graphs

Used to understand concepts and
experiences based on accumulated
knowledge

2
The analysis is based on
mathematics and other statistical
analysis

Analysis based on summarizing,
categorizing, and interpreting

This dissertation uses an inductive approach with a quantitative technique for
research. This study uses two datasets, each with at least 10,000 images, to distinguish
between real and artificial human faces. The images are labelled to indicate whether
they are real or fake, and this information is used to train a machine learning model.
The inductive approach involves collecting data, analysing it, and formulating ideas
or generalizations considering the results. Liu (2016) describes a general inductive
strategy that can be applied to provide significant interpretive power to make sense
of data in educational research. This strategy is practical and adaptable. Because the
goal of this study is to uncover patterns and trends in the data that can be used to
distinguish between actual and synthetic human faces, this approach is ideal.

3.2 Data Search Strategy and Collection

Identifying and sourcing appropriate datasets that match research goals is the
foundation of any data-driven research. Appropriate datasets serve as the foundation
upon which models are built and evaluated (Ponce et al., 2006). Choosing diverse and
representative datasets is crucial to avoid bias and ensure model fairness (Pagano et
al., 2023). The intended approach is to obtain the required datasets containing both
real and synthetic faces, and then train a machine learning model in Python to
effectively categorize both types of faces. The datasets used, Person Face Dataset and
Flickr-Faces-HQ Dataset (FFHQ), were selected after careful consideration of their
relevance and suitability. Specific criteria were created to ensure the quality and
suitability of the datasets. First, the data sets had to contain many both real human
faces and GAN-generated faces. Second, the data sets must be publicly available and
well documented so that the research process is reproducible and transparent.
Finally, ethical considerations were key, and datasets containing real human faces
required appropriate consent and usage rights.

Person Face Dataset contains synthetic images generated by GANs. These
photos demonstrate GAN's extraordinary ability to create incredibly compelling
humanoid faces. In addition, the FFHQ dataset collected through the Flickr photo
sharing site contains legitimate photos of real human faces taken in different
environments. The combination of these datasets provides a balanced representation

of both real and GAN-generated human faces. Research ensures the quality, integrity,
and representativeness of the datasets collected by adhering to strict criteria.

3.3 Ethical Implications

The advent of machine learning and image categorization techniques has
raised several ethical issues, particularly when dealing with sensitive data such as
human faces. This section discusses the ethical issues of classifying real and GAN-
generated human faces. It emphasizes the importance of responsible data use,
possible biases, and the societal consequences of misclassification.

Data ethics addresses a variety of issues, including informed consent, privacy,
and data ownership. This study is categorised low risk as it uses two publicly
available datasets. One obtained from Kaggle under CC0: Public Domain license,
consisting of 10,000 photographs of human faces created from a GAN model (Xu,
2021). Despite its synthetic origins, it makes you think about the implications of
creating hyper-realistic images of people who don't exist. Such photos could be used
for various purposes, including disinformation or identity theft. The ethical
application of synthetic data requires a delicate balance between scientific progress
and social responsibility. The other dataset is Flickr-Faces-HQ (FFHQ) used in the
StyleGAN architecture development by Karras et al. (2019) which contains 70,000
high-quality images of real human faces with a resolution of 1024x1024 under the
Creative Commons BY-NC-SA 4.0 license. The use of the FFHQ dataset, a secondary
dataset, which consists of publicly uploaded Flickr photos, raises concerns about user
consent to share images. Although the data set complies with the Flickr’s Terms of
Service and only images collected under permissive licenses, it is important to
consider potential ethical concerns associated with the use of photos posted in an
online community.

Machine learning algorithms are prone to bias in training data, which can lead
to skewed or unfair predictions. There may be bias associated with facial
classification based on gender, race, or other demographics. Considering this issue,
efforts have been made to reduce bias in data collection and model training. The
importance of algorithmic fairness has been highlighted in the literature (Mitchell et
al., 2021). To counteract prejudice, diverse and representative datasets covering a
wide range of human appearances were used. In addition, the study used data
augmentation and balanced sampling to ensure that real and GAN-generated faces
were represented equally. Using fairness-aware metrics during model evaluation
helps reduce bias even further.

Beyond the technical correctness, image categorization models have a social
consequence. Misclassification of the human face can have serious consequences,
especially in critical situations such as security or law enforcement (Lu, 2023).
Misidentification could lead to wrongful allegations or violations of individual rights.
When introducing such models, it is crucial to examine potential downstream

https://creativecommons.org/publicdomain/zero/1.0/

impacts as well as accountability measures. The study recognizes the need to provide
explicit explanations for model predictions to facilitate human interpretation and
monitoring (Gilpin, 2018). Efforts are made to ensure that the model's decisions are
interpretable and consistent with human values, thereby increasing trust and
accountability.

The cornerstone of this research are ethical considerations that guide the
responsible and conscientious use of data and technology. Data set selection, bias
reduction measures, and accountability procedures all contribute to the ethical
framework of the study. As technology advances, the project aims to contribute to the
discussion on the ethical implications of machine learning applications, particularly
image classification. The next sections cover the execution platform, data
preparation, feature engineering, machine learning models, scoring matrix, and the
methodology used, which explains how these components are influenced by and
aligned with ethical considerations.

3.4 Execution Platform

Successful application of the research methodology depends on a solid
execution platform that enables efficient code development, experimentation, and
model evaluation. Research is conducted on a Windows machine utilizing the Python
programming language and the PyCharm integrated development environment
(IDE) for its versatility and productivity.

The project involves working with large datasets of real and GAN-generated
human faces. The work of preprocessing, feature extraction, and model training on
such large amounts of data requires a solid execution platform capable of efficiently
managing computational resources. While cloud options were considered, practical
problems arose when dealing with massive amounts of data. Uploading large files to
cloud servers posed challenges in terms of data transport speed and storage space. In
addition, the computing power required to process large amounts of data presented
difficulties as cloud solutions were limited by the given resources.

Given the difficulties associated with cloud-based solutions, an offline
execution strategy was carefully selected as the optimal alternative. This decision is
based on the freedom and cost-effectiveness that an offline environment offers.
Initial experimentation and model development on a local computer offers the
benefit of full control over computing resources and ensuring that processing
limitations do not impede progress. When dealing with large datasets, in this case
around 30 GB of image data, and when optimal use of local hardware resources is
critical, this strategy is invaluable. Additionally, the offline execution strategy is a
cost-effective alternative as it does not require costly cloud subscriptions or dedicated
infrastructure. While the research starts with an offline execution technique, the
approach is scalable in the future. If necessary, the study implementation can be
easily transferred to cloud-based technologies. The offline environment acts as a

steppingstone for fundamental experimentation and modelling. As research evolves
and data processing requirements increase, the code base and methodology can be
moved to cloud platforms with more processing and storage capacity.

Libraries and their role

• NumPy and Pandas are core data manipulation and analysis libraries.
NumPy’s array-based operations and Pandas data structures ensure efficient
data set processing and enable smooth pre-processing and feature
development.

• OpenCV is useful for image preprocessing and editing. It offers a wide range
of image resizing, normalization, and data expansion operations, ensuring
consistency and compatibility across the dataset.

• Keras, a TensorFlow library component, simplifies the creation and training
of deep learning models. Its high-level API allows rapid prototyping of neural
network architectures and allows the creation of sophisticated models with
minimal coding effort.

• Streamlit: This library is used to develop an interactive online application for
model visualization and evaluation. Its easy-to-use interface allows
researchers and stakeholders to interact with the trained model and gain
insights into predictions and performance.

• Matplotlib and Seaborn: These visualization libraries help visualize data
distributions, model performance, and function plots by allowing the creation
of informative charts and graphs.

• Scikit-learn: Scikit-learn is a library that provides a comprehensive set of
machine learning algorithms, tools, and measurements. Its user-friendly
interface facilitates the integration of various categorization models and
evaluation measures.

• VGG16: The pre-trained deep learning model VGG16 is used for feature
extraction. Its convolutional layers collect hierarchical image features,
enabling effective learning of the categorization representation. It is a popular
option and serves as a solid baseline model in computer vision research due to
its simple architecture, compact convolution filters, and layer organization
(Tammina, 2019).

3.5 Data Preprocessing

Data preparation is critical to improving the quality and reliability of machine
learning models (Njeri, 2022). In the context of this study, data pre-processing refers
to a set of activities that transform raw image data into an organized and usable
format for further analysis and modelling.

3.5.1 Data Organisation

The research leverages two publicly available datasets: the Person Face
Dataset and the FFHQ dataset. Manually labelling each image was a critical step in

this process. Because this is a supervised machine learning problem, manual
labelling allows for the creation of accurate ground truth labels. Each image was
classified as "Real" or "GAN-generated" based on its source. This manual labelling
process provides a solid foundation for model training and evaluation. To do this, a
renaming method was used that uniquely identifies each image while retaining its
class affiliation. The renaming used a formula-based approach to generate serial
numbers that reflect image classification.

Table 2 Individual Image renaming criteria

Class Formula to check the class
Real (image name - 1) % 9 = 0
GAN-generated (image name - 2) % 9 = 0

This methodical renaming ensures that each image is clearly identified and
organized for later pre-processing and analysis.

3.5.2 Image Standardization and Resizing

The variety of image dimensions is one of the central problems when dealing
with image data. The convergence and accuracy of the model can be affected by
different image sizes (Viertel & König, 2022). To solve this problem, a crucial step in
data preprocessing is the standardization of image size. All photos are resized to a
standard resolution of 224 x 224 pixels to ensure they are all the same size.

3.5.3 Normalization and Intensity Scaling

The normalization of pixel values, along with the standardization of the image
dimensions, is crucial for the stability and convergence of the model (Kusunose,
2022). By dividing each pixel value by 255.0, the image pixel values are normalized to
a range of [0,1]. Normalization reduces the impact of changing lighting conditions by
ensuring that pixel intensity values are consistent across datasets. This preprocessing
phase is critical for achieving optimal performance during model training using
gradient-based optimization.

3.5.4 Data Augmentation

Data enrichment is a strategy to improve model generalization while reducing
overfitting. Augmentation creates new training samples by applying different
transformations to existing images. Techniques such as rotating, mirroring and
zooming are used to supplement the data set. Augmentation makes the training set
more diverse and variable, allowing the model to acquire robust features and
patterns (Shoaib, 2022). By generating enhanced versions of the original photos, the
model improves its ability to deal with a variety of real-world circumstances.

3.5.5 Train-Test-Validation Splits

A critical step in the data preprocessing workflow is the partitioning of the data
set into discrete subsets. To enable successful model training, hyperparameter
tuning, and unbiased evaluation, the datasets are divided into training, validation,
and test sets. To ensure a representative sample, the distribution of real and GAN-
generated images is carefully maintained across different subsets. The train set is
used to train the model, the validation set is used to fine-tune hyperparameters, and
the test set is used to evaluate model performance.

The research ensures that the datasets conform to the machine learning
models through methodical organization and thorough pre-processing approaches.
These pre-processing processes improve the resilience and reliability of the
following machine learning phases.

3.6 Feature Engineering

Feature engineering is critical to improving the rendering performance of
machine learning models. Feature engineering enables models to identify detailed
patterns and correlations by extracting meaningful and relevant features from raw
data, improving their predictive capabilities (Pramanik, 2021). In the context of this
study, feature engineering is an important step in classifying real and GAN-generated
human faces.

Convolutional neural networks (CNNs) have emerged as powerful methods for
extracting features from image data. A CNN is a type of deep learning architecture
designed to automatically learn hierarchical and discriminatory features from
images (Santos et al., 2022). A pre-trained VGG16 model was used for feature
extraction in this study. The VGG16 model, is known for its ability to capture complex
visual aspects (He, 2020). Features were retrieved from the block5_conv2 layer of the
VGG16 model. This layer collects high-level semantically significant features and is
therefore useful for distinguishing between actual and GAN-generated human faces.

The feature extraction method is to pass each image through the VGG16 model
and retrieve the feature vector generated by the block5_conv2 layer. This vector
encapsulates the main visual information of the image. The feature vector is then
flattened to create a one-dimensional representation, converting the image into a
collection of numerical features.

The derived feature vectors from the VGG16 model are inherently high-
dimensional, which can lead to computational inefficiencies and overfitting. To solve
these challenges, dimensionality reduction techniques have been employed to
minimize the feature space while retaining the most informative components.
Dimensionality reduction was achieved using principal component analysis (PCA).
The primary axes of variation in the data are identified via PCA and the feature
vectors are projected onto a lower dimensional subspace. This subspace preserves

the highest variance of the original data and enables the generation of a compact yet
informative feature representation.

Since not all extracted features contribute equally to model performance,
feature selection is an important part of feature engineering. A feature importance
analysis was performed to identify the most distinctive features for distinguishing
between actual and GAN-generated human faces. To rank and select features based
on their importance to the classification task, techniques such as recursive feature
elimination (RFE) and mutual information were used.

3.7 Machine Learning Model

A crucial step towards an accurate and robust classification of real and GAN-
generated human faces is the selection of suitable machine learning models.
Machine learning models serve as the backbone of the classification pipelines, using
the data retrieved to discover differentiated patterns and make informed predictions.
This section describes the machine learning models used in this study, highlighting
their architecture, training procedures, and importance in achieving the research
goals.

3.7.1 Binary Classification

Given the nature of the problem (a binary classification task), various well-
known machine learning models were evaluated for implementation. The main goal
was to find models that understand complex relationships and can distinguish
between actual and GAN-generated human faces. Because of its demonstrated
success in image classification tasks, Convolutional Neural Network (CNN) is chosen
for this task.

3.7.2 Convolutional Neural Network (CNN)

CNNs have transformed image categorization by learning hierarchical
features directly from pixel values. CNNs are characterized by their ability to capture
local patterns via convolutional layers while learning global relationships via pooling
and fully connected layers. A custom CNN architecture was created, consisting of
numerous layers of convolution and pooling, followed by dense layers of
classification. The CNN architecture was designed to take advantage of the spatial
hierarchies visible in images to successfully capture differentiators.

Table 3 CNN Architecture

Layer Type Output Shape Param #
dense Dense (None, 512) 51380736
batch_normalization Batch

Normalization
(None, 512) 2048

dropout Dropout (None, 512) 0
dense_1 Dense (None, 256) 131328
batch_normalization_1 Batch

Normalization
(None, 256) 1024

dropout_1 Dropout (None, 256) 0
dense_2 Dense (None, 128) 32896
batch_normalization_2 Batch

Normalization
(None, 128) 512

dropout_2 Dropout (None, 128) 0
dense_3 Dense (None, 64) 8256
batch_normalization_3 Batch

Normalization
(None, 64) 256

dropout_3 Dropout (None, 64) 0
dense_4 Dense (None, 1) 65

Total params: 51557121 (196.67 MB), Trainable params: 51555201 (196.67 MB), Non-trainable params: 1920 (7.50 KB)

3.7.3 Model Training and Hyperparameter Tuning

The model underwent extensive training to discover discriminative patterns
from manufactured features. Model-specific hyperparameters such as the learning
rate in CNN were optimized during the training phase. To determine the ideal
parameter values that resulted in higher classification performance, hyperparameter
tuning approaches such as grid search and cross-validation were used. Transfer
learning and fine-tuning strategies were explored to exploit the potential of pre-
trained models and take advantage of their learned representations. The CNN model
architecture was built using weights from a pre-trained VGG16 model and then
refined with data from the research challenge. The model was fine-tuned to match
the learned features to the intricacies of real and GAN-generated human face
classification tasks.

3.8 Evaluation Matrix

Scoring machine learning models is an important part of any classification process
as it provides insight into how the model is performing and enables more informed
decisions. The precise classification of real and GAN-generated human faces depends
on the rigorous evaluation of the machine learning models used in this study. This
section examines the scoring matrix used to assess model performance, including
the metrics used, their interpretation, and their relevance to the research goals.

3.8.1 Evaluation Metrics

To assess the performance of the machine learning models in categorizing real and
GAN-generated human faces, a set of comprehensive assessment measures were

used. These measurements include accuracy, precision, recall, F1 score, and area
under the Receiver Operating Characteristic Curve (AUC-ROC).

To assess the performance of the machine learning models in categorizing real
and GAN-generated human faces, a set of comprehensive assessment measures were
used. These measurements include accuracy, precision, recall, F1 score, and area
under the Receiver Operating Characteristic Curve (AUC-ROC).

1. Accuracy is a fundamental parameter that quantifies the proportion of
correctly identified examples relative to the total number of occurrences.
While accuracy provides a general picture of model performance, it can be
misleading in unbalanced datasets where one class is dominant (Brabec, 2018).

2. Precision measures the proportion of truly positive predictions out of all
positive predictions. This is particularly important when the cost of false
positives is significant, such as when GAN-generated images are falsely
flagged as genuine (Dinga et al., 2019).

3. Recall (Sensitivity): Recall calculates the proportion of correct positive
predictions compared to correct positive cases. This is especially important
when the cost of false negatives is significant, such as when actual photos are
incorrectly labeled as GAN generated.

4. The F1 score is the harmonious mean of precision and memory and provides
a balanced picture of a model's performance. This is useful when a balance
between precision and recall is required.

5. AUC-ROC: The AUC-ROC metric evaluates the model's ability to distinguish
between two classes at different probability thresholds. It calculates the area
under the curve by plotting the true positive rate (TPR) versus the false positive
rate (FPR). AUC-ROC is particularly useful for unbalanced datasets as it
provides a single value that summarizes the model's discriminative ability.

3.8.2 Interpretation and Analysis

The interpretation of these measurements in the context of this study is
crucial. High accuracy can mean good performance, but it can be deceiving with
unbalanced data sets. Precision and recall are important indicators of the model's
ability to reliably classify real and GAN-generated faces while minimizing false
positives and false negatives. The F1 score combines these two factors and provides
an overall assessment of the effectiveness of the model. AUC-ROC is resistant to class
imbalances and provides information on how well the model discriminates between
classes.

3.8.3 Cross-Validation and Test Set Evaluation

Cross-validation techniques were used to confirm the reliability and
generalizability of the model. The dataset was divided into training and validation
sets using K-fold cross-validation to ensure that each instance was used for both
training and validation. Overfitting was avoided and the assessment results were

more robust. In addition, the machine learning models were evaluated using a
separate test set that was not used during model building. This provided objectivity
in the review and revealed the model's performance on previously undisclosed data,
reflecting its potential usefulness in practice.

3.9 Methodology

Once downloaded, the data set is pre-processed by normalizing the pixel
values and scaling the photos to a standard size. The model is then trained after a
model architecture suitable for the task has been determined. After the model has
been trained, its performance is tested on the validation set. The performance of the
model can be further improved by adjusting the hyperparameters such as learning
rate, stack size, and number of epochs. The quality of the data, the adequacy of the
model architecture, and the effectiveness of the hyperparameter tuning have a
significant impact on the classifier's performance; As a result, the development
process of an image classifier will be iterative, involving numerous rounds of
experimentation and refinement.

4. Results

4.1 Exploratory Data Analysis

This section provides the key insights and findings from the Exploratory Data
Analysis (EDA) datasets consisting of real and GAN-generated human faces. The
following points provide a quick overview of the EDA performed on the data set.

4.1.1 Dataset Visualization

In the first step of EDA, the dataset is visually examined. For closer inspection,
random selection of images was selected. Visually examining these selections
revealed variations between the images like colour profile, different image
orientations, different lighting conditions, and the presence of background noise and
artifacts in certain photos. These results typically provide important insights into the
real-world nature of the datasets. In the current dataset, these differences in visual
properties are not as drastic and required only minor cleaning and standardization.

Figure 1 Random selection of images

Almost 5% of the randomly selected images did not meet the acceptable
threshold for direct use in the model. However, the remaining 95% of the photos met
the required uniformity and quality standards so they could be immediately
integrated into the model. This significant variance in image selection highlights the
need for a more rigorous image selection method to ensure that all data inputs
consistently meet the model's prescribed standards, improving overall performance
and reliability.

The dataset included 10,000 real images and 10,000 images generated by GANs.
Photos were methodologically divided into training, testing, and validation sets to
support effective machine learning. The training set contained 12,000 unique photos,
while the remaining 8,000 were divided equally between the test and validation sets.
These splits were made with extreme caution to avoid biased splits. This targeted
method protects against imbalances in the training set and improves the robustness
and fairness of the performance evaluation and training process of our machine
learning models.

Table 4 Train-Test-Validation Splits

Counts Training Set Test Set Validation Set Total
Total Image
Count

12,000 4,000 4,000 20,000

Real Image
Count

6,000 2,000 2000 10,000

Key image statistics were methodologically calculated to improve the
understanding of the quantitative characteristics of the dataset. Calculating essential
image statistics such as mean pixel values, standard deviation, and colour

distribution analysis is critical when compiling the collection. These statistical
indicators are systematically calculated to minimize and eliminate bias in the
training set. This ensures that our machine learning models are trained on a fairer
and more representative data set, reducing the possibility of biased performance
differences, and promoting fair and accurate learning outcomes.

Table 5 Image Statistics

Number of Images 12,000
Average Image Size (KB) 429.442
Mean of Mean Pixel Values 112.699

The colour channels of the image graph provide interesting insights into the data set.
A wide range of skin tones, lighting conditions and background settings are
represented in the graphic through differences in colour profiles between photos.
Although these differences are rather small, they highlight the relevance of the
datasets to the real world by reflecting the underlying complexity of human faces in
different environments. These variations highlight the need for a strong model that
can detect such subtleties.

Figure 2 Colour Channels of Train set

Figure 3 Edge Counts of the Train Set

The image edge count graph provides a unique perspective. It highlights the
presence of sharp edges in the images that can represent shapes and features on the
face. What is interesting is that the diagram has different numbers of edges, which
could indicate different image compositions and orientations. This result highlights
the model's ability to reproduce facial representations with varying levels of detail,
which is a critical component of classification accuracy.

Figure 4 Colour Channels of Train and Test Splits

Similarity tests of images were also conducted as part of the EDA to remove
similar images from the dataset. Detecting such pairs was critical to identifying likely
duplicate or near-duplicate images, which, if ignored, could introduce biases in

model training and evaluation. By identifying these similarities, datasets diversity is
managed while avoiding over-representation of individual image examples.

4.2 Streamlit Dashboard

The developed dashboard loads images from the dashboard folder, extract
features from images, and then uses the trained model to predict the legitimacy of
the images. Images with red overlay are incorrectly classified. The current dataset
images as well as new set of test images can also be used fort this dashboard.

Figure 5 Snapshot of the Streamlit Dashboard

4.3 Error Analysis

Error analysis is a crucial component in assessing the performance of a classification
model. It requires a thorough investigation of the models' misclassifications and an
understanding of why these errors occur. By conducting error analysis, one can learn
more about the limitations of the model and potential areas for development.

4.3.1 Types of Misclassifications:

Misclassifications related to the classification of real and synthetic human faces can
be broadly divided into the following categories: False positives: Images that were
classified as real but were GAN-generated. False negatives are images that have been
labelled as synthetic but are real.

5. Discussions

5.1 Accuracy and Generalization

The model's astonishing 98.5% accuracy in image categorization is a
remarkable, especially for tasks with complex visual inputs. This level of precision
demonstrates the model's ability to recognize detailed patterns and features in
photos, making precise predictions on previously unseen data. Importantly, the
model's ability to automatically extract relevant visual information, rather than the
names of the images, is crucial to success. Using the VGG-16 model as a feature
extractor is crucial to the performance of our model. VGG-16 was trained on large
datasets to capture basic visual properties. This allows images to be categorized into
numerous categories, including distinguishing between real and fake images.

Table 6 Model Metrics

Metric Real Images GAN-Generated

Accuracy 0.985 0.985

Precision 0.982 0.988

Recall 0.988 0.982

F1 Score 0.985 0.985

Figure 6 Accuracies and Loss Over Epochs

In particular, the precision of the model not necessarily indicate overfitting.

Overfitting is a typical problem in machine learning where a model is heavily fitted
to the training data, resulting in poor generalization. On the other hand, the
consistent accuracy of our model across training, testing, and validation datasets
demonstrates its robustness and lack of overfitting.

5.2 Data Distribution and Imbalance

Before diving into the model's performance, it's essential to consider the data
distribution across different datasets. We have a total of 20,000 images, with 10,000
being real images and the remaining 10,000 being of another class. This balanced
dataset ensures that the model is not biased toward any class, contributing to its
generalization ability.

5.3 Challenges in Classifying Orientation

While our model excels in classifying images as real or another class, it encounters
difficulties when classifying images based on the orientation of the person in the
picture. Specifically, it struggles to correctly identify instances where there is another
person in the image or when the person is facing at an angle.

Figure 7 Random Misclassified Images

5.3.1 Multiple Persons in the Image

One of the difficulties the model faces is distinguishing between photos with a
single person and those with many people. Because it focuses on identifying the
presence of a person rather than their number, the model may misclassify photos
containing more than one person as real images. To solve this problem, future
improvements could include using object detection techniques to accurately count
the number of people in an image.

5.3.2 Angled Orientation

Another area where the model struggles is that the person in the image is not
looking directly at the camera, but at an angle. This can lead to misclassifications
because the model may not correctly capture people's distinguishing characteristics.
Advanced approaches such as posture estimation could be incorporated into the
model to better understand an individual's orientation toward improving
performance in such cases.

5.4 Ethical Implication of the research

Using secondary datasets downloaded from the internet to categorize actual
and AI-generated human faces raises several ethical questions. The use of existing
datasets initially raises concerns about the consent and privacy of the people depicted
in such photos. The privacy rights of people whose photos are included in the datasets
could be violated without the necessary authorization or anonymization. It is
important and hence the data used in this project is ethically sourced and sufficiently
anonymized, as maintaining privacy is a key ethical concept.

Ethical requirements for AI initiatives also include transparency and
responsible disclosure. To promote ethical AI development, it is critical to clearly
describe the sources and procedures used in collecting and preparing datasets and
provide insight into model limitations. In summary, although the experiment
hopefully helps to improve image categorization, it is important to recognize the
moral implications of using online secondary datasets. To maintain the highest
ethical standards in AI research and development, ethical issues such as privacy,
bias, openness, and responsible disclosure is carefully considered.

6. Conclusion

6.1 Summary

In this study, an efficient and optimal method of classifying real human faces
from AI generated faces, a CNN model was built to categorize real and GAN-produced
human faces. The model managed to classify real and GAN-generated images with an
accuracy of around 98.5%. Literature review was conducted to identify the current
trends in artificial face generation, its problems, and methods for recognizing the
faces generated by AI. The VGG-16 model was used to identify the distinguishing
features. Thorough data preprocessing, comprehensive exploratory data analysis,
and intelligent error analysis have resulted in the creation of a strong machine
learning model with excellent accuracy. The model is evaluated using various metrics
to evaluate the performance of the model on the test data. Possible ways to improvise
the current methods of AI-generated faces were evaluated and the final model was
implemented. The final phase of the model development process involved creating a
dynamic dashboard using Streamlit. This is intended to carry out image
categorization in real time. This interactive dashboard combines the power of our
trained model with a pre-trained VGG-16 model to process a random selection of
existing photos from the dataset as well as completely new images, demonstrating
the model's capabilities in an easy-to-use interface. A balanced dataset and solid
training enabled our model to achieve outstanding accuracy. Overall, the
performance of our model is promising for practical image classification tasks, but
there is still room for development in dealing with tricky situations.

6.2 Future Directions and Improvements

To further enhance our model's performance, several avenues for improvement can
be explored:

1. Data Augmentation: The model can better handle orientation
differences and multiple people in photos by expanding the diversity of
training data through data augmentation approaches.

2. Pose Estimation: Incorporating pose estimation models can increase
classification accuracy by correctly identifying the orientation of
people in photos.

3. Object detection: The use of methods to count the number of people in
photos can help minimize misclassifications.

4. Human Feedback: To pinpoint misclassifications and improve the
model accordingly, feedback can be obtained from human annotators
to identify misclassifications.

5. Faces transformed from real images: Instead of creating fake faces,
techniques such as using machine learning algorithms to completely
alter the structure of real faces can go unnoticed.

6. Explainability and interpretability: While high accuracy is undoubtedly
a useful indicator, it is also important to consider how interpretable and
explainable our models' predictions are. To build confidence in the
model's predictions, one must understand why it made a particular
choice, especially in complex situations. To see which areas of the
image the model focuses on when predicting, strategies such as
gradient-based class activation maps (CAM) can be used. This can
provide insights into the model's decision-making process.

6.3 Critical Reflection

Developing a project to categorize real and AI-generated human faces using a
CNN model was an exciting and challenging adventure that led to critical self-
reflection on my learning process. Recognizing the dynamic nature of the field is one
of the key takeaways from this endeavour. Throughout the project, I experienced the
rapid development of AI-generated material, forcing me to constantly update my
knowledge and change my approach. This experience highlighted the importance of
staying current in the rapidly changing field of artificial intelligence.

The initiative also made me aware of the difficulties and moral dilemmas
associated with AI-generated material. The more I delved into the intricacies of
distinguishing between real and artificial photos, the more I became aware of the
potential impacts of misclassification, such as the spread of false information and
privacy issues. This made me more aware of the ethical obligations that come with
working in deep learning and AI and motivated me to approach future initiatives with
more ethical rigor. The project also demonstrated the value of thorough data
preparation. A crucial part of the model development was collecting and curating a
data set that accurately represented both actual and AI-generated faces. I discovered
the importance of diverse and high-quality data because it has a direct impact on the
success of the model. This project improved my technological skills while expanding
my understanding of the moral and practical implications of using AI-generated
material.

7. References
Abdolahnejad, M., & Liu, P. (2020). Deep learning for face image synthesis and semantic

manipulations: a review and future perspectives. Artificial Intelligence Review, 53(8), 5847–
5880. https://doi.org/10.1007/s10462-020-09835-4

Alamayreh, O. (2021, September 10). Detection of GAN-synthesized street videos. arXiv.org.
https://arxiv.org/abs/2109.04991

Bang, Y. O. (2021, December 22). DA-FDFtNet: Dual Attention Fake Detection Fine-tuning Network to
Detect Various AI-Generated Fake Images. arXiv.org. https://arxiv.org/abs/2112.12001

Bank, D. (2020, March 12). Autoencoders. arXiv.org. https://arxiv.org/abs/2003.05991

Brabec, J. (2018, December 4). Bad practices in evaluation methodology relevant to class-imbalanced
problems. arXiv.org. https://arxiv.org/abs/1812.01388

Burton, J. W., & Soare, S. R. (2019). Understanding the Strategic Implications of the Weaponization of
Artificial Intelligence. IEEE. https://doi.org/10.23919/cycon.2019.8756866

Choi, Y. (2017, November 24). StarGAN: Unified Generative Adversarial Networks for Multi-Domain
Image-to-Image Translation. arXiv.org. https://arxiv.org/abs/1711.09020

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., & Bharath, A. A. (2018).
Generative Adversarial Networks: An Overview. IEEE Signal Processing Magazine, 35(1), 53–
65. https://doi.org/10.1109/msp.2017.2765202

Dang, H. (2019, October 3). On the Detection of Digital Face Manipulation. arXiv.org.
https://arxiv.org/abs/1910.01717

Ding, Z., Jiang, S., & Zhao, J. (2022). Take a close look at mode collapse and vanishing gradient in
GAN. 2022 IEEE 2nd International Conference on Electronic Technology, Communication
and Information (ICETCI). https://doi.org/10.1109/icetci55101.2022.9832406

Dinga, R., Bw, P., Dj, V., Schmaal, L., & Af, M. (2019). Beyond accuracy: Measures for assessing
machine learning models, pitfalls and guidelines. bioRxiv (Cold Spring Harbor Laboratory).
https://doi.org/10.1101/743138

Du, H. (2023, January 9). Enabling AI-Generated Content (AIGC) Services in Wireless Edge Networks.
arXiv.org. https://arxiv.org/abs/2301.03220

Gilpin, L. H. (2018, May 31). Explaining Explanations: An Overview of Interpretability of Machine
Learning. arXiv.org. https://arxiv.org/abs/1806.00069

Goodfellow, I. (2014). Generative Adversarial Nets.
https://papers.nips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-
Abstract.html

Gorard, S. (2001). Quantitative Methods in Educational Research: The Role of Numbers Made Easy.
ResearchGate.
https://www.researchgate.net/publication/44832401_Quantitative_Methods_in_Educational_
Research_The_Role_of_Numbers_Made_Easy

Gu, X., & Angelov, P. (2018). Semi-supervised deep rule-based approach for image classification.
Applied Soft Computing, 68, 53–68. https://doi.org/10.1016/j.asoc.2018.03.032

He, X. (2020). Heterogeneous Transfer Learning for Hyperspectral Image Classification Based on
Convolutional Neural Network. https://www.semanticscholar.org/paper/Heterogeneous-
Transfer-Learning-for-Hyperspectral-He-Chen/84e5ef965a7cec991912d70ef2222f0f8a9fe517

Jordan, B. (2009). Blurring Boundaries: The “Real” and the “Virtual” in Hybrid Spaces. Human
Organization, 68(2), 181–193. https://doi.org/10.17730/humo.68.2.7x4406g270801284

Karras, T. (2017, October 27). Progressive Growing of GANs for Improved Quality, Stability, and
Variation. arXiv.org. https://arxiv.org/abs/1710.10196

Karras, T. (2019, December 3). Analyzing and Improving the Image Quality of StyleGAN. arXiv.org.
https://arxiv.org/abs/1912.04958

Karras, T., Laine, S., & Aila, T. (2019). A Style-Based Generator Architecture for Generative
Adversarial Networks. IEEE. https://doi.org/10.1109/cvpr.2019.00453

Kas, S. (n.d.). Do you know if I’m real? An experiment to benchmark human recognition of AI-
generated faces. AIS Electronic Library (AISeL). https://aisel.aisnet.org/bled2020/7/

Khan, F., Pasha, M. A., & Masud, S. (2021). Advancements in Microprocessor Architecture for
Ubiquitous AI—An Overview on History, Evolution, and Upcoming Challenges in AI
Implementation. Micromachines, 12(6), 665. https://doi.org/10.3390/mi12060665

Kingma, D. P., & Welling, M. (2019). An Introduction to Variational Autoencoders. Foundations and
Trends in Machine Learning, 12(4), 307–392. https://doi.org/10.1561/2200000056

Koldewyn, K., Hanus, P., & Balas, B. (2013). Visual adaptation of the perception of “life”: Animacy is
a basic perceptual dimension of faces. Psychonomic Bulletin & Review, 21(4), 969–975.
https://doi.org/10.3758/s13423-013-0562-5

Kreps, S. E., McCain, R. M., & Brundage, M. (2020). All the News That’s Fit to Fabricate: AI-Generated
Text as a Tool of Media Misinformation. Journal of Experimental Political Science (Print),
9(1), 104–117. https://doi.org/10.1017/xps.2020.37

Kusunose, T. (2022). Facial Expression Emotion Recognition Based on Transfer Learning and
Generative Model. https://www.semanticscholar.org/paper/Facial-Expression-Emotion-
Recognition-Based-on-and-Kusunose-Kang/c9c64e374b543208fcb5b26fd357c90cb7da26e3

Li, L. (2016). Using Generic Inductive Approach in Qualitative Educational Research: A Case Study
Analysis. Journal of Education and Learning, 5(2), 129. https://doi.org/10.5539/jel.v5n2p129

Li, Y. (2019, September 27). Celeb-DF: A Large-scale Challenging Dataset for DeepFake Forensics.
arXiv.org. https://arxiv.org/abs/1909.12962

Liu, C. (2021, December 17). AI-Empowered Persuasive Video Generation: A Survey. arXiv.org.
https://arxiv.org/abs/2112.09401

Lu, Z. (2023). Seeing is not always believing: Benchmarking Human and Model Perception of AI-
Generated Images. https://www.semanticscholar.org/paper/Seeing-is-not-always-
believing%3A-Benchmarking-Human-Lu-
Huang/b9b308428283e4899afabee10fab6cf234de8fd7

Meel, P., & Vishwakarma, D. K. (2020). Fake news, rumor, information pollution in social media and
web: A contemporary survey of state-of-the-arts, challenges and opportunities. Expert
Systems With Applications, 153, 112986. https://doi.org/10.1016/j.eswa.2019.112986

Mitchell, S., Potash, E., Barocas, S., D’Amour, A., & Lum, K. (2021). Algorithmic Fairness: Choices,
Assumptions, and Definitions. Annual Review of Statistics and Its Application, 8(1), 141–163.
https://doi.org/10.1146/annurev-statistics-042720-125902

Nightingale, S. J. (2022). AI-synthesized faces are indistinguishable from real faces and more
trustworthy. PNAS. https://doi.org/10.1073/pnas.2120481119

Njeri, N. R. (2022). Data Preparation For Machine Learning Modelling.
https://www.semanticscholar.org/paper/Data-Preparation-For-Machine-Learning-
Modelling-Njeri/c968aee2d44a304f5a3c1058b768792887cd820f

Ozkan, S. (2018, June 22). KinshipGAN: Synthesizing of Kinship Faces From Family Photos by
Regularizing a Deep Face Network. arXiv.org. https://arxiv.org/abs/1806.08600

Pagano, T. P., Loureiro, R. B., Lisboa, F. V. N., Peixoto, R. M., De Sousa Guimarães, G. A., Cruz, G. O.
R., Araujo, M. M., Santos, L. L. D., Cruz, M. a. S., De Oliveira, E. L. S., Winkler, I., &
Nascimento, E. G. S. (2023). Bias and Unfairness in Machine Learning Models: A Systematic

Review on Datasets, Tools, Fairness Metrics, and Identification and Mitigation Methods. Big
Data and Cognitive Computing, 7(1), 15. https://doi.org/10.3390/bdcc7010015

Person Face Dataset (thispersondoesnotexist). (2021, December 12). Kaggle.
https://www.kaggle.com/datasets/almightyj/person-face-dataset-thispersondoesnotexist

Pierre Berger Diccan.com, A Impasse Marie Louise, Maisons-Laffitte (France). (n.d.). Digital creation
| Proceedings of the 2014 Virtual Reality International Conference. ACM Other Conferences.
https://dl.acm.org/doi/10.1145/2617841.2620704

Ponce, J., Berg, T. L., Everingham, M., Forsyth, D., Hebert, M., Lazebnik, S., Marszałek, M., Schmid,
C., Russell, B., Torralba, A., Williams, C. K. I., Zhang, J., & Zisserman, A. (2006). Dataset
Issues in Object Recognition. In Lecture Notes in Computer Science (pp. 29–48).
https://doi.org/10.1007/11957959_2

Pramanik, R. (2021). Comparative Analysis of Mobile Price Classification Using Feature Engineering
Techniques. https://www.semanticscholar.org/paper/Comparative-Analysis-of-Mobile-Price-
Classification-Pramanik-Agrawal/87225a4b14a5b126fa01aa2a1442470d27c21b58

Rossi, S. (2022, September 15). Are Deep Learning-Generated Social Media Profiles Indistinguishable
from Real Profiles? arXiv.org. https://arxiv.org/abs/2209.07214

SAGE PublicationsSage UK: London, England. (n.d.). Cambridge Analytica’s black box - Margaret Hu,
2020. Sage Journals. https://doi.org/10.1177/2053951720938091

Santos, C. F. G. D., De Souza Oliveira, D., Passos, L. A., Pires, R. G., Santos, D. O., Valem, L. P.,
Moreira, T. P., Santana, M. C. S., Roder, M., Papa, J. P., & Colombo, D. (2022). Gait
Recognition Based on Deep Learning: A Survey. ACM Computing Surveys, 55(2), 1–34.
https://doi.org/10.1145/3490235

Shoaib, M. R. (2022). Efficient deep learning models for brain tumor detection with segmentation
and data augmentation techniques. https://www.semanticscholar.org/paper/Efficient-deep-
learning-models-for-brain-tumor-with-Shoaib-
Elshamy/f33557f39b5af448f24078d5703288bb19676904

Simon, H. A. (1993). Anecdotes-a very early expert system. IEEE Annals of the History of Computing,
15(3), 64–68. https://doi.org/10.1109/85.222851

Su, J. (2018, November 18). GAN-QP: A Novel GAN Framework without Gradient Vanishing and
Lipschitz Constraint. arXiv.org. https://arxiv.org/abs/1811.07296

Sun, Y. (2014, June 18). Deep Learning Face Representation by Joint Identification-Verification.
arXiv.org. https://arxiv.org/abs/1406.4773

Tammina, S. (2019). Transfer learning using VGG-16 with Deep Convolutional Neural Network for
Classifying Images. International Journal of Scientific and Research Publications, 9(10),
p9420. https://doi.org/10.29322/ijsrp.9.10.2019.p9420

Viertel, P., & König, M. (2022). Pattern recognition methodologies for pollen grain image
classification: a survey. Journal of Machine Vision and Applications, 33(1).
https://doi.org/10.1007/s00138-021-01271-w

Wang, R. (2019, September 13). FakeSpotter: A Simple yet Robust Baseline for Spotting AI-
Synthesized Fake Faces. arXiv.org. https://arxiv.org/abs/1909.06122

Wang, T., & Lin, Y. (n.d.). CycleGAN with Better Cycles. www.tongzhouwang.info.

Xiang, J., Mi, T., & Wang, X. (2022). Adaptation in face animacy perception: An event-related
potential study. Neuropsychologia, 165, 108118.
https://doi.org/10.1016/j.neuropsychologia.2021.108118

Yegemberdiyeva, G., & Amirgaliyev, B. (2021). Study Of AI Generated And Real Face Perception. 2021
IEEE International Conference on Smart Information Systems and Technologies (SIST).
https://doi.org/10.1109/sist50301.2021.9465908

8. Appendix

8.1 Appendix 1 (Ethics Approval)

8.2 Appendix 2 (Code)

00_files_rename.py
import os

Define the paths to the folders containing the images

real_people_folder = r"C:\Users\iamsa\Documents\Dissertation\Datasets\real"

gan_faces_folder = r"C:\Users\iamsa\Documents\Dissertation\Datasets\fake"

real_factor = 1

fake_factor = 2

Function to rename images based on series

def rename_images(folder_path, series_number):

 for idx, filename in enumerate(sorted(os.listdir(folder_path))):

 if filename.endswith('.jpg') or filename.endswith('.png'):

 new_name = f'{series_number + 9 * idx:09d}.jpg'

 os.rename(os.path.join(folder_path, filename),

os.path.join(folder_path, new_name))

Rename images in the real people folder using Series 1

rename_images(real_people_folder, real_factor)

Rename images in the GAN generated faces folder using Series 2

rename_images(gan_faces_folder, fake_factor)

01_test_train_val_splits.py
import os

import random

import shutil

Set a random seed for reproducibility

random_seed = 42

random.seed(random_seed)

Define the paths to the folders containing real and fake images

real_people_folder = r"C:\Users\iamsa\Documents\Dissertation\Datasets\real"

gan_faces_folder = r"C:\Users\iamsa\Documents\Dissertation\Datasets\fake"

Define paths for train, validation, and test folders

train_folder = r"C:\Users\iamsa\Documents\Dissertation\Directories\train"

val_folder = r"C:\Users\iamsa\Documents\Dissertation\Directories\val"

test_folder = r"C:\Users\iamsa\Documents\Dissertation\Directories\test"

Total number of images desired in each set

total_images_per_set = 20000

Train-validation-test split ratios (adjust as needed)

train_ratio = 0.6 # 60% of the data for training

val_ratio = 0.2 # 20% of the data for validation, the rest for testing

Function to clean and create folders

def clean_and_create_folder(folder_path):

 if os.path.exists(folder_path):

 shutil.rmtree(folder_path)

 os.makedirs(folder_path)

Clean and create train, validation, and test folders

clean_and_create_folder(train_folder)

clean_and_create_folder(val_folder)

clean_and_create_folder(test_folder)

Function to copy and split images

def split_images(src_folder, dest_folder, num_images):

 image_files = os.listdir(src_folder)

 selected_images = random.sample(image_files, num_images)

 for image in selected_images:

 src_path = os.path.join(src_folder, image)

 dest_path = os.path.join(dest_folder, image)

 shutil.copy(src_path, dest_path)

Determine the number of real and fake images needed based on the total

num_real_images = total_images_per_set // 2

num_fake_images = total_images_per_set // 2

Calculate the number of images for train, validation, and test sets

num_real_train = int(num_real_images * train_ratio)

num_real_val = int(num_real_images * val_ratio)

num_real_test = num_real_images - num_real_train - num_real_val

num_fake_train = int(num_fake_images * train_ratio)

num_fake_val = int(num_fake_images * val_ratio)

num_fake_test = num_fake_images - num_fake_train - num_fake_val

Copy and split real images

split_images(real_people_folder, train_folder, num_real_train)

split_images(real_people_folder, val_folder, num_real_val)

split_images(real_people_folder, test_folder, num_real_test)

Copy and split fake images

split_images(gan_faces_folder, train_folder, num_fake_train)

split_images(gan_faces_folder, val_folder, num_fake_val)

split_images(gan_faces_folder, test_folder, num_fake_test)

print("Images successfully split into train, validation, and test sets.")

02_00_split_balance_check.py
import os

Define a list of paths to the folders containing test images

test_folders = [

 r"C:\Users\iamsa\Documents\Dissertation\Directories\val",

 r"C:\Users\iamsa\Documents\Dissertation\Directories\test",

 r"C:\Users\iamsa\Documents\Dissertation\Directories\train",

 # Add more folder paths here as needed

]

Function to check if an image is real or fake based on its name

def check_real_or_fake(image_name):

 number = int(image_name[:-4]) # Remove the file extension and convert

the remaining part to an integer

 if (number - 1) % 9 == 0:

 return "Real" # Images from Series 1 are real

 elif (number - 2) % 9 == 0:

 return "Fake" # Images from Series 2 are fake

 else:

 return "Unknown" # Images with other numbers are not assigned to a

series

Loop through each test folder

for test_folder in test_folders:

 num_real = 0

 num_fake = 0

 # Check real or fake for images in the current test folder

 for filename in os.listdir(test_folder):

 if filename.endswith('.jpg') or filename.endswith('.png'): #

Adjust the file extensions as needed

 result = check_real_or_fake(filename)

 if result == "Real":

 num_real += 1

 elif result == "Fake":

 num_fake += 1

 #print(f"{filename}: {result}")

 # Calculate the total number of test images in the current folder

 total_test_images = num_real + num_fake

 # Calculate the percentage of real and fake images in the current

folder

 percentage_real = (num_real / total_test_images) * 100

 percentage_fake = (num_fake / total_test_images) * 100

 # Print the results for the current folder

 print(f"Folder: {test_folder}")

 print(f"Total Real Images: {num_real}")

 print(f"Total Fake Images: {num_fake}")

 print(f"Percentage of Real Images: {percentage_real:.2f}%")

 print(f"Percentage of Fake Images: {percentage_fake:.2f}%")

 print()

02_01_rgb_edges.py
import os

import numpy as np

import matplotlib.pyplot as plt

from PIL import Image

import cv2

import pandas as pd

Define the path to the folder containing your standardized face image

dataset

dataset_folder = r"C:\Users\iamsa\Documents\Dissertation\Directories\train"

Initialize lists to store image statistics

image_files = []

color_histograms = []

edge_counts = []

Process each face image in the dataset folder

for image_file in os.listdir(dataset_folder):

 if image_file.endswith(('.png', '.jpg', '.jpeg')):

 image_path = os.path.join(dataset_folder, image_file)

 # Open the image using Pillow (PIL)

 image = Image.open(image_path)

 image = np.array(image) # Convert to numpy array

 # Calculate color histogram

 color_hist = cv2.calcHist([image], [0, 1, 2], None, [8, 8, 8], [0,

256, 0, 256, 0, 256])

 color_hist = color_hist.flatten()

 color_hist = color_hist / np.sum(color_hist) # Normalize the

histogram

 # Calculate edge count using Canny edge detection

 gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)

 edges = cv2.Canny(gray_image, 100, 200)

 edge_count = np.sum(edges)

 # Store image statistics in lists

 image_files.append(image_file)

 color_histograms.append(color_hist)

 edge_counts.append(edge_count)

Create a DataFrame to store the image statistics

image_stats_df = pd.DataFrame({

 'Image File': image_files,

 'Color Histogram': color_histograms,

 'Edge Count': edge_counts

})

Visualize color histograms as a stacked bar chart

colors = ['red', 'green', 'blue']

plt.figure(figsize=(12, 6))

for i, color in enumerate(colors):

 color_values = [hist[i] for hist in image_stats_df['Color Histogram']]

 plt.hist(color_values, bins=20, alpha=0.7, color=color, label=f'Channel

{i + 1}')

plt.xlabel('Color Value')

plt.ylabel('Frequency')

plt.title('Color Channels')

plt.legend()

plt.grid()

plt.savefig('Color_Channels.png', dpi=600, bbox_inches='tight')

plt.show()

Histogram of Edge Counts

plt.figure(figsize=(10, 5))

plt.hist(image_stats_df['Edge Count'], bins=20, color='purple', alpha=0.7)

plt.xlabel('Edge Count')

plt.ylabel('Frequency')

plt.title('Edge Counts')

plt.grid()

plt.savefig('Edge_Counts.png', dpi=600, bbox_inches='tight')

plt.show()

02_02_color_channels.py
import os

import cv2

import matplotlib.pyplot as plt

import numpy as np

Function to calculate and plot color histograms

def plot_color_histograms(folder_path, folder_name, ax):

 # Initialize lists to store histograms for each channel

 red_histogram = []

 green_histogram = []

 blue_histogram = []

 # Iterate through images in the folder

 for filename in os.listdir(folder_path):

 if filename.endswith('.jpg'):

 image_path = os.path.join(folder_path, filename)

 image = cv2.imread(image_path)

 # Calculate histograms for each color channel

 hist_red = cv2.calcHist([image], [0], None, [256], [0, 256])

 hist_green = cv2.calcHist([image], [1], None, [256], [0, 256])

 hist_blue = cv2.calcHist([image], [2], None, [256], [0, 256])

 # Normalize histograms

 hist_red /= hist_red.sum()

 hist_green /= hist_green.sum()

 hist_blue /= hist_blue.sum()

 # Append histograms to the lists

 red_histogram.append(hist_red)

 green_histogram.append(hist_green)

 blue_histogram.append(hist_blue)

 # Convert lists to NumPy arrays for plotting

 red_histogram = np.array(red_histogram)

 green_histogram = np.array(green_histogram)

 blue_histogram = np.array(blue_histogram)

 # Plot histograms

 ax.plot(red_histogram.mean(axis=0), color='red', label='Red Channel')

 ax.plot(green_histogram.mean(axis=0), color='green', label='Green

Channel')

 ax.plot(blue_histogram.mean(axis=0), color='blue', label='Blue

Channel')

 ax.set_title(f'Color Channel Histograms - {folder_name}')

 ax.legend()

Path to your image folders

folder1_path = r"C:\Users\iamsa\Documents\Dissertation\Directories\train"

folder2_path = r"C:\Users\iamsa\Documents\Dissertation\Directories\test"

Create a single chart with color histograms for both folders

plt.figure(figsize=(12, 6))

ax1 = plt.subplot(1, 2, 1)

plot_color_histograms(folder1_path, 'Train Folder', ax1)

ax2 = plt.subplot(1, 2, 2)

plot_color_histograms(folder2_path, 'Test Folder', ax2)

plt.tight_layout()

plt.savefig('colorchannel.png', dpi=600, bbox_inches='tight')

plt.show()

03_feature_engineering.py
import os

import numpy as np

from keras.preprocessing.image import load_img, img_to_array

from keras.applications.vgg16 import VGG16, preprocess_input

from keras.models import Model

import cv2

Load the VGG16 model without the top (classification) layers

base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224,

224, 3))

Extract features from a specific layer

layer_name = 'block5_conv2'

feature_extractor = Model(inputs=base_model.input,

outputs=base_model.get_layer(layer_name).output)

Set the path to your image folders and feature save folder

train_images_path =

r"C:\Users\iamsa\Documents\Dissertation\Directories\train"

val_images_path =

r"C:\Users\iamsa\Documents\Dissertation\Directories\val"

test_images_path =

r"C:\Users\iamsa\Documents\Dissertation\Directories\test"

features_save_path =

r"C:\Users\iamsa\Documents\Dissertation\Directories\features"

Function to extract features from an image

def extract_features(image_path, feature_extractor):

 img = load_img(image_path, target_size=(224, 224)) # Load image and

resize

 img_array = img_to_array(img) # Convert image to array

 img_array = np.expand_dims(img_array, axis=0) # Expand dimensions for

the model

 img_array = preprocess_input(img_array) # Preprocess the image

 features = feature_extractor.predict(img_array) # Extract features

 return features.flatten() # Flatten the features into a 1D array

Set the target size for resizing

target_size = (224, 224)

Function to resize images in a folder

def resize_images(folder_path, target_size):

 for filename in os.listdir(folder_path):

 image_path = os.path.join(folder_path, filename)

 img = cv2.imread(image_path)

 img_resized = cv2.resize(img, target_size)

 cv2.imwrite(image_path, img_resized)

Resize images in train folder

resize_images(train_images_path, target_size)

Resize images in test folder

resize_images(test_images_path, target_size)

Resize images in validation folder

resize_images(val_images_path, target_size)

print("Images resized to 256x256.")

Create directories for saving features

os.makedirs(features_save_path, exist_ok=True)

Extract and save features for train images

for filename in os.listdir(train_images_path):

 image_path = os.path.join(train_images_path, filename)

 features = extract_features(image_path, feature_extractor)

 save_path = os.path.join(features_save_path,

f"{filename.split('.')[0]}.npy")

 np.save(save_path, features)

print("Features extracted and saved for train images.")

Extract and save features for validation images

for filename in os.listdir(val_images_path):

 image_path = os.path.join(val_images_path, filename)

 features = extract_features(image_path, feature_extractor)

 save_path = os.path.join(features_save_path,

f"{filename.split('.')[0]}.npy")

 np.save(save_path, features)

print("Features extracted and saved for validation images.")

Extract and save features for test images

for filename in os.listdir(test_images_path):

 image_path = os.path.join(test_images_path, filename)

 features = extract_features(image_path, feature_extractor)

 save_path = os.path.join(features_save_path,

f"{filename.split('.')[0]}.npy")

 np.save(save_path, features)

print("Features extracted and saved for test images.")

04_train_model.py
import os

import numpy as np

from sklearn.model_selection import train_test_split

from keras.models import Sequential

from keras.layers import Dense, BatchNormalization, Dropout

from keras.optimizers import Adam

from sklearn.metrics import accuracy_score

import matplotlib.pyplot as plt

Set the path to your feature data

features_save_path =

r"C:\Users\iamsa\Documents\Dissertation\Directories\features"

Load the features and generate labels based on image names

train_features = []

train_labels = []

for filename in os.listdir(features_save_path):

 if filename.endswith(".npy"):

 feature_path = os.path.join(features_save_path, filename)

 label = filename.split('.')[0]

 features = np.load(feature_path)

 train_features.append(features)

 # Generate labels based on the image name

 image_number = int(label)

 if (image_number - 1) % 9 == 0:

 train_labels.append(1) # Real image

 elif (image_number - 2) % 9 == 0:

 train_labels.append(0) # GAN-generated image

Convert lists to numpy arrays

train_features = np.array(train_features)

train_labels = np.array(train_labels)

Split the data into train and validation sets

X_train, X_val, y_train, y_val = train_test_split(train_features,

train_labels, test_size=0.2, random_state=42)

Build the model

model = Sequential()

model.add(Dense(512, activation='relu',

input_shape=(train_features.shape[1],)))

model.add(BatchNormalization())

model.add(Dropout(0.5))

model.add(Dense(256, activation='relu'))

model.add(BatchNormalization())

model.add(Dropout(0.5))

model.add(Dense(128, activation='relu'))

model.add(BatchNormalization())

model.add(Dropout(0.5))

model.add(Dense(64, activation='relu'))

model.add(BatchNormalization())

model.add(Dropout(0.5))

model.add(Dense(1, activation='sigmoid'))

Compile the model

model.compile(optimizer=Adam(lr=0.001), loss='binary_crossentropy',

metrics=['accuracy'])

Print the model architecture

model.summary()

Initialize lists to store training history

train_loss_history = []

train_accuracy_history = []

val_loss_history = []

val_accuracy_history = []

Train the model and record history

epochs = 10

for epoch in range(epochs):

 history = model.fit(X_train, y_train, epochs=1, batch_size=32,

validation_data=(X_val, y_val))

 # Record training and validation loss and accuracy

 train_loss_history.append(history.history['loss'][0])

 train_accuracy_history.append(history.history['accuracy'][0])

 val_loss_history.append(history.history['val_loss'][0])

 val_accuracy_history.append(history.history['val_accuracy'][0])

 print(

 f"Epoch {epoch + 1}/{epochs} - Loss: {train_loss_history[-1]:.4f} -

Accuracy: {train_accuracy_history[-1]:.4f} - Val Loss: {val_loss_history[-

1]:.4f} - Val Accuracy: {val_accuracy_history[-1]:.4f}")

Plot training and validation loss

plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)

plt.plot(range(1, epochs + 1), train_loss_history, label='Training Loss')

plt.plot(range(1, epochs + 1), val_loss_history, label='Validation Loss')

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.title('Loss Over Time')

plt.legend()

Plot training and validation accuracy

plt.subplot(1, 2, 2)

plt.plot(range(1, epochs + 1), train_accuracy_history, label='Training

Accuracy')

plt.plot(range(1, epochs + 1), val_accuracy_history, label='Validation

Accuracy')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.title('Accuracy Over Time')

plt.legend()

plt.tight_layout()

plt.show()

Evaluate the model

val_predictions = model.predict(X_val)

val_predictions_classes = np.round(val_predictions).flatten() # Round to 0

or 1

val_accuracy = accuracy_score(y_val, val_predictions_classes)

print("Validation Accuracy:", val_accuracy)

Save the trained model

model_save_path =

r"C:\Users\iamsa\Documents\Dissertation\Directories\model"

os.makedirs(model_save_path, exist_ok=True)

model.save(os.path.join(model_save_path, 'model.h5'))

print("Trained model saved.")

05_perf_metrics.py
import os

import numpy as np

import matplotlib.pyplot as plt

from keras.models import load_model

from keras.preprocessing.image import load_img, img_to_array

from keras.applications.vgg16 import VGG16, preprocess_input

from keras.models import Model

from sklearn.metrics import confusion_matrix, classification_report,

accuracy_score, precision_score, recall_score, f1_score, roc_curve, auc

Load the trained model

model_path =

r"C:\Users\iamsa\Documents\Dissertation\Directories\model\model.h5"

loaded_model = load_model(model_path)

Load the VGG16 model without the top (classification) layers

base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224,

224, 3))

Set the path to your test images

test_images_path =

r"C:\Users\iamsa\Documents\Dissertation\Directories\test"

Extract features from VGG16

def extract_features(image_array, feature_extractor):

 features = feature_extractor.predict(image_array)

 flattened_features = features.reshape(features.shape[0], -1)

 return flattened_features

layer_name = 'block5_conv2'

Initialize lists for ROC curve

roc_labels = []

roc_scores = []

Initialize counters for metrics

tp_real = 0

tn_real = 0

fp_real = 0

fn_real = 0

tp_gan = 0

tn_gan = 0

fp_gan = 0

fn_gan = 0

Process test images and calculate metrics

for filename in os.listdir(test_images_path):

 if filename.endswith(".jpg") or filename.endswith(".png"):

 image_path = os.path.join(test_images_path, filename)

 # Determine ground truth label based on the given formula

 image_number = int(filename.split('.')[0])

 actual_label_real = (image_number - 1) % 9 == 0

 actual_label_gan = (image_number - 2) % 9 == 0

 # Load and preprocess the image for VGG16

 target_size = (224, 224)

 image = load_img(image_path, target_size=target_size)

 image_array = img_to_array(image)

 image_array = np.expand_dims(image_array, axis=0)

 image_array = preprocess_input(image_array)

 # Extract features using the VGG16 model

 feature_extractor = Model(inputs=base_model.input,

outputs=base_model.get_layer(layer_name).output)

 features = extract_features(image_array, feature_extractor)

 # Make predictions using the loaded model

 prediction = loaded_model.predict(features)

 # Compare predictions with actual labels

 predicted_label_real = prediction[0][0] > 0.95

 predicted_label_gan = not predicted_label_real

 if actual_label_real:

 if predicted_label_real:

 tp_real += 1

 else:

 fn_real += 1

 else:

 if predicted_label_real:

 fp_real += 1

 else:

 tn_real += 1

 if actual_label_gan:

 if predicted_label_gan:

 tp_gan += 1

 else:

 fn_gan += 1

 else:

 if predicted_label_gan:

 fp_gan += 1

 else:

 tn_gan += 1

 # Append ground truth label and prediction score for ROC curve

 roc_labels.append(actual_label_real)

 roc_scores.append(prediction[0][0])

Calculate metrics for real images

accuracy_real = (tp_real + tn_real) / (tp_real + tn_real + fp_real +

fn_real) if (tp_real + tn_real + fp_real + fn_real) > 0 else 0

precision_real = tp_real / (tp_real + fp_real) if (tp_real + fp_real) > 0

else 0

recall_real = tp_real / (tp_real + fn_real) if (tp_real + fn_real) > 0 else

0

f1_score_real = 2 * (precision_real * recall_real) / (precision_real +

recall_real) if (precision_real + recall_real) > 0 else 0

Calculate metrics for GAN-generated images

accuracy_gan = (tp_gan + tn_gan) / (tp_gan + tn_gan + fp_gan + fn_gan) if

(tp_gan + tn_gan + fp_gan + fn_gan) > 0 else 0

precision_gan = tp_gan / (tp_gan + fp_gan) if (tp_gan + fp_gan) > 0 else 0

recall_gan = tp_gan / (tp_gan + fn_gan) if (tp_gan + fn_gan) > 0 else 0

f1_score_gan = 2 * (precision_gan * recall_gan) / (precision_gan +

recall_gan) if (precision_gan + recall_gan) > 0 else 0

Calculate ROC curve for all images

fpr, tpr, _ = roc_curve(roc_labels, roc_scores)

roc_auc = auc(fpr, tpr)

Display metrics for real images

print("Metrics for Real Images:")

print("Accuracy:", accuracy_real)

print("Precision:", precision_real)

print("Recall:", recall_real)

print("F1 Score:", f1_score_real)

Display metrics for GAN-generated images

print("\nMetrics for GAN-Generated Images:")

print("Accuracy:", accuracy_gan)

print("Precision:", precision_gan)

print("Recall:", recall_gan)

print("F1 Score:", f1_score_gan)

Display ROC curve for all images

plt.figure(figsize=(8, 6))

plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area =

{:.2f})'.format(roc_auc))

plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('ROC Curve for All Images')

plt.legend(loc='lower right')

plt.show()

06_streamlit_app.py
import streamlit as st

import numpy as np

import os

from keras.models import load_model

from keras.preprocessing.image import load_img, img_to_array

from keras.applications.vgg16 import VGG16, preprocess_input

from keras.models import Model

from PIL import Image, ImageDraw

Load the trained model

model_path =

r"C:\Users\iamsa\Documents\Dissertation\Directories\model\model.h5"

loaded_model = load_model(model_path)

Load the VGG16 model without the top (classification) layers

base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224,

224, 3))

Extract features from VGG16

def extract_features(image_array, feature_extractor):

 features = feature_extractor.predict(image_array)

 flattened_features = features.reshape(features.shape[0], -1)

 return flattened_features

layer_name = 'block5_conv2'

Function to make predictions and display results

def predict_and_display(image_path):

 target_size = (224, 224)

 image = Image.open(image_path)

 image = image.resize(target_size)

 image_array = img_to_array(image)

 image_array = np.expand_dims(image_array, axis=0)

 image_array = preprocess_input(image_array)

 feature_extractor = Model(inputs=base_model.input,

outputs=base_model.get_layer(layer_name).output)

 features = extract_features(image_array, feature_extractor)

 prediction = loaded_model.predict(features)

 predicted_label = 1 if prediction[0][0] > 0.5 else 0

 # Get the image number from the filename

 filename = os.path.basename(image_path)

 image_number = int(filename.split('.')[0])

 # Determine actual class based on the formula

 actual_label_real = (image_number - 1) % 9 == 0

 actual_label_gan = (image_number - 2) % 9 == 0

 actual_label = 1 if actual_label_real else 0

 return image, predicted_label, actual_label

Streamlit app

def main():

 import streamlit as st

 # Centered title using Markdown

 st.markdown("<h3 style='text-align: center;'>Real Human Faces

Classifier</h3>", unsafe_allow_html=True)

 st.markdown("
", unsafe_allow_html=True)

 # Provide the folder path manually

 folder_path =

r"C:\Users\iamsa\Documents\Dissertation\Directories\test_sample"

 image_files = [os.path.join(folder_path, filename) for filename in

os.listdir(folder_path) if

 filename.endswith((".jpg", ".png"))]

 st.markdown(

 """

 <style>

 button[title^=Exit]+div [data-testid=stImage]{

 text-align: center;

 display: block;

 margin-left: auto;

 margin-right: auto;

 width: 100%;

 }

 </style>

 """, unsafe_allow_html=True

)

 num_images = len(image_files)

 num_rows = min((num_images + 3) // 4, 4)

 for row in range(num_rows):

 col1, col2, col3, col4 = st.columns(4)

 for col, image_path in zip((col1, col2, col3, col4),

image_files[row * 4: (row + 1) * 4]):

 image, predicted_label, actual_label =

predict_and_display(image_path)

 true_positive = (predicted_label == 1 and actual_label == 1)

 true_negative = (predicted_label == 0 and actual_label == 0)

 false_positive = (predicted_label == 1 and actual_label == 0)

 false_negative = (predicted_label == 0 and actual_label == 1)

 overlay = Image.new("RGBA", image.size, (255, 0, 0, 128)) if

false_positive or false_negative else None

 if overlay:

 image = Image.alpha_composite(image.convert("RGBA"),

overlay)

 caption = ""

 if true_positive:

 caption += "True Positive\n"

 if true_negative:

 caption += "True Negative\n"

 if false_positive:

 caption += "False Positive\n"

 if false_negative:

 caption += "False Negative\n"

 col.image(image, caption=caption, use_column_width=True)

if __name__ == "__main__":

 main()

07_error_analysis.py
import os

import numpy as np

import shutil # To move files

from keras.models import load_model

from keras.preprocessing.image import load_img, img_to_array

from keras.applications.vgg16 import VGG16, preprocess_input

from keras.models import Model

Load the trained model

model_path =

r"C:\Users\iamsa\Documents\Dissertation\Directories\model\model.h5"

loaded_model = load_model(model_path)

Load the VGG16 model without the top (classification) layers

base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224,

224, 3))

Set the path to your test images

test_images_path =

r"C:\Users\iamsa\Documents\Dissertation\Directories\test"

Define output folders for misclassified images

misclassified_real_folder =

r"C:\Users\iamsa\Documents\Dissertation\Directories\misclassified_real"

misclassified_gan_folder =

r"C:\Users\iamsa\Documents\Dissertation\Directories\misclassified_gan"

Create the output folders if they don't exist

os.makedirs(misclassified_real_folder, exist_ok=True)

os.makedirs(misclassified_gan_folder, exist_ok=True)

Extract features from VGG16

def extract_features(image_array, feature_extractor):

 features = feature_extractor.predict(image_array)

 flattened_features = features.reshape(features.shape[0], -1)

 return flattened_features

layer_name = 'block5_conv2'

Process test images and find misclassified images

for filename in os.listdir(test_images_path):

 if filename.endswith(".jpg") or filename.endswith(".png"):

 image_path = os.path.join(test_images_path, filename)

 # Determine ground truth label based on the given formula

 image_number = int(filename.split('.')[0])

 actual_label_real = (image_number - 1) % 9 == 0

 actual_label_gan = (image_number - 2) % 9 == 0

 # Load and preprocess the image for VGG16

 target_size = (224, 224)

 image = load_img(image_path, target_size=target_size)

 image_array = img_to_array(image)

 image_array = np.expand_dims(image_array, axis=0)

 image_array = preprocess_input(image_array)

 # Extract features using the VGG16 model

 feature_extractor = Model(inputs=base_model.input,

outputs=base_model.get_layer(layer_name).output)

 features = extract_features(image_array, feature_extractor)

 # Make predictions using the loaded model

 prediction = loaded_model.predict(features)

 # Compare predictions with actual labels

 predicted_label_real = prediction[0][0] > 0.7

 predicted_label_gan = not predicted_label_real

 # Move misclassified images to respective folders

 if actual_label_real and not predicted_label_real:

 shutil.copy(image_path, os.path.join(misclassified_real_folder,

filename))

 elif actual_label_gan and not predicted_label_gan:

 shutil.copy(image_path, os.path.join(misclassified_gan_folder,

filename))

